KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
About the articles

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

The parabola

Let P be an arbitrary point of the conic. Consider the sphere G which touches the plane of the conic and the cone at the point F and at circle k, respectively. Let the generator through P intersect k at point P'. Let the intersection of the planes of circle k and the conic be line d, and let D and P* be the projections of P to d and to the plane of circle k, respectively. The angles P*PP' and P*PD are equal to the half of the apex angle of the cone, which yields that PD=PP'=PF. Hence,

Each point P of the conic is equidistant from point F and line d; and thus, by the definition, the conic is a parabola.


Back to the previous page

Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program