KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Játékszabályok
Technikai információk
TeX tanfolyam
Regisztráció
Témák

 

apehman

Rendelje meg a KöMaL-t!

Támogatóink:

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Reklám:

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - "ujjgyakorlatok"

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[900] Sinobi2015-01-17 13:08:44

Úgy hiszem, hogy

Létezik egy olyan I inverzió, hogy P és Q egymás képei legyenek minden kúpszelet esetén. Ennek megfelelően PQ akkor minimális, ha a felezőpontjuk c(I) / vagy I egyik fixpontján mennek át mindketten.

Előzmény: [898] w, 2015-01-13 20:29:38
[899] HoA2015-01-15 09:38:32

Így túl általános a kérdés. A négy ponton át - még ha az egyenes el is választja egymástól azokat - általában rajzolható olyan kúpszelet, amelynek nincs közös pontja az egyenessel vagy amelyik érinti, a válasz tehát: 0

A korábbi hasonló, körrel kapcsolatos feladatból kiindulva talán az lenne a jó kitűzés, hogy a pontok feküdjenek az egyenes két oldalán és ellipszist kelljen keresni.

Előzmény: [890] Sinobi, 2014-09-11 05:20:41
[898] w2015-01-13 20:29:38

Értelmezem ezt úgy, hogy szeretnéd újra figyelem tárgyává tenni a feladatot. Amennyiben ez a helyzet, kérlek ismertesd a megoldásodat vagy azt, amire vele kapcsolatban gondolsz, hogy okulhassunk belőle.

Előzmény: [896] Sinobi, 2015-01-11 11:06:40
[897] HoA2015-01-12 11:04:46

Az UP jelentését itt és hasonló helyeken kerestem, de nem találtam. Vagy valami másról van szó?

http://www.webopedia.com/quick_ref/textmessageabbreviations.asp

Előzmény: [896] Sinobi, 2015-01-11 11:06:40
[896] Sinobi2015-01-11 11:06:40

ezt UP!-olom

Előzmény: [890] Sinobi, 2014-09-11 05:20:41
[895] Hajba Károly2015-01-08 20:14:17

S még annyi kiegészítést tennék hozzá, hogy ez igaz a hét bármely napjához rendelt 28-ig bármely napszám esetére is. Fölötte már külön vizsgálatot igényel, melyet most még nem tettem meg, így arról nem nyilatkozom.

Előzmény: [892] lorantfy, 2015-01-01 13:23:25
[894] Hajba Károly2015-01-08 20:09:46

Igen. Én is így gondolkoztam. S valóban ebben az évben 3-szor is lesz, ez adta a feladat apropóját.

Előzmény: [892] lorantfy, 2015-01-01 13:23:25
[893] jonas2015-01-02 15:32:04

Hasonlóan az is igaz, hogy minden évben van olyan hónap, ami hat hétbe nyúlik bele.

[892] lorantfy2015-01-01 13:23:25

A januárhoz viszonyított maradékok azt mutatják, mennyivel csúszik adott dátum a hónapokban. Mivel minden maradék előfordul normál és szökőévekben is, ezért minden évben lesz péntek 13. Normál években a 3 a legtöbbször előforduló maradék, háromszor van.Szökőévben a 0 van háromszor. Szóval max. 3 péntek 13 lehet, abban a normál évben, ahol február 13. péntekre esik, vagy szökőévben, ha január 13. péntek. 2015-ben február 13. péntek, így 3 lesz.

Előzmény: [891] Hajba Károly, 2014-12-29 18:49:19
[891] Hajba Károly2014-12-29 18:49:19

Léteznek-e olyan esztendők, melyekben péntek egyszer sem esik 13-ára? Egy évben legfeljebb hányszor esik péntekre 13-a?

Bónusz: mikor lesz legközelebb maximális év?

[890] Sinobi2014-09-11 05:20:41

fix A B C D pontokon atmeno kupszeletek mikor vagnak ki legrovidebb szakaszt egy e egyenesbol?

Előzmény: [889] w, 2014-09-10 21:26:56
[889] w2014-09-10 21:26:56

Nem lett volna egyszerűbb úgy megfogalmazni, hogy számtani-mértanival

&tex;\displaystyle PQ=OP+OQ\ge 2\sqrt{OP\cdot OQ}=2\sqrt{OA\cdot OB},&xet;

aminek egyenlőség-esete &tex;\displaystyle OP=OQ&xet;?

Előzmény: [888] Sinobi, 2014-09-10 20:16:47
[888] Sinobi2014-09-10 20:16:47

Legyen &tex;\displaystyle AB.e = O&xet; és &tex;\displaystyle kör.e = P,Q&xet;.

Létezik egy olyan O középpontú inverzió, hogy P és Q egymás képei legyenek minden kör esetén. Ennek megfelelően PQ akkor minimális, ha a felezőpontjuk O. Az AB felezőmerőlegese és az O-bs állított e-re merőleges egyenes metszéspontja a keresett kör középpontja.

Előzmény: [887] w, 2014-09-07 22:34:29
[887] w2014-09-07 22:34:29

Adott az &tex;\displaystyle e&xet; egyenes, illetve az &tex;\displaystyle A&xet; és &tex;\displaystyle B&xet; pont úgy, hogy &tex;\displaystyle e&xet; elmetszi az &tex;\displaystyle AB&xet; szakaszt. Szerkesszük meg azt a kört &tex;\displaystyle A&xet; és &tex;\displaystyle B&xet; pontokon keresztül, amelyet &tex;\displaystyle e&xet; a lehető legrövidebb húrban metsz.

[886] w2014-07-15 18:39:21

Legyen &tex;\displaystyle b_n=a^{a^n}-1&xet;: ha most &tex;\displaystyle m\ge n&xet;, akkor &tex;\displaystyle a_n|b_{n+1}|b_m&xet;, és

&tex;\displaystyle a_m=\frac{a^{a^{m+1}}-1}{a^{a^m}-1}=\sum_{k=0}^{a-1}a^{k\cdot a^m}\equiv a\mod (b_m),&xet;

ahonnan &tex;\displaystyle a_n&xet; és &tex;\displaystyle a_m&xet; minden közös &tex;\displaystyle p&xet; prímosztójára &tex;\displaystyle p|a_m,b_m&xet; miatt &tex;\displaystyle p|a&xet;, így &tex;\displaystyle p|a^{a^m}-b_m=1&xet; teljesülne, ami ellentmondásos lévén &tex;\displaystyle a_n&xet; és &tex;\displaystyle a_m&xet; relatív prímségét igazolja.

Előzmény: [877] w, 2014-06-11 22:58:23
[885] w2014-07-15 18:22:52

Legyen &tex;\displaystyle f(x)=x^{1/x}&xet;. Ekkor &tex;\displaystyle f&xet; deriváltja:

&tex;\displaystyle f'(x)=-x^{\frac 1x-2}(\ln x-1).&xet;

(Hisz láncszabállyal &tex;\displaystyle (\ln(f))'=\ln'(f)\cdot f'=\frac{f'}{f}&xet;, ahonnan

&tex;\displaystyle f'=f\cdot (\ln (f))'=x^{1/x}\cdot \left(\frac 1x \ln x\right)'=x^{1/x}\cdot \left[-\frac1{x^2}\ln x+\frac 1{x^2}\right].)&xet;

Ebből adódik, hogy &tex;\displaystyle x>e&xet; esetén &tex;\displaystyle f'(x)<0&xet;, vagyis &tex;\displaystyle f&xet; az &tex;\displaystyle [e;\infty)&xet; intervallumon monoton csökken. Tehát

&tex;\displaystyle x_i^{\frac1{x_i}}\ge (x_i+\dots+x_n)^{\frac1{x_i+\dots+x_n}},&xet;

átalakítva

&tex;\displaystyle x_i^{\frac{x_i+\dots+x_n}{x_i}}\ge x_i+\dots+x_n.&xet;

Ezt &tex;\displaystyle i=1&xet;-től &tex;\displaystyle n&xet;-ig összegezve a bizonyítandót kapjuk. (Egyenlőség pedig nem állhat fenn.)

Előzmény: [884] Cogito, 2014-07-04 21:39:42
[884] Cogito2014-07-04 21:39:42

Remélem, nem volt még:

Legyenek &tex;\displaystyle x_1&xet;, &tex;\displaystyle x_2&xet;, . . . , &tex;\displaystyle x_n&xet; &tex;\displaystyle \ge&xet; &tex;\displaystyle e&xet;.

Bizonyítsuk be, hogy

&tex;\displaystyle x_1^{\frac{x_1 + x_2 + ... + x_n}{x_1}} + x_2^{\frac{x_2 + x_3 + ... + x_n}{x_2}} + ... + x_{n-1}^{\frac{x_{n-1} + x_n}{x_{n-1}}} + x_n \ge x_1 + 2x_2 + ... + (n - 1)x_{n-1} + nx_n&xet; .

[883] w2014-06-24 10:26:26

Igen, tényleg, de szerintem érdekes átfogalmazás. :)

Az előbbi feladatom megoldását valaki lelőné?

Előzmény: [882] HoA, 2014-06-23 16:18:40
[882] HoA2014-06-23 16:18:40

Egy igazi ujjgyakorlat: Igazoljuk, hogy a Geometria téma [1845] -ben kitűzött feladat egyenértékű a B 4639. KöMaL feladattal.

[881] HoA2014-06-19 20:14:32

Ujjgyakorlatnak kicsit erősnek vélem.

Előzmény: [877] w, 2014-06-11 22:58:23
[880] w2014-06-19 00:05:13

A Fermat-számoshoz képest a relatív prímséget igazoló utolsó lépés kicsit összetettebb (és szebb is).

Előzmény: [879] jonas, 2014-06-18 22:45:01
[879] jonas2014-06-18 22:45:01

Ezt a feladatot ismerem az &tex;\displaystyle a = 2 &xet; esetben, és tetszik. Más &tex;\displaystyle a &xet;-ra még nem gondolkodtam el rajta, de szerintem ugyanaz a bizonyítás megy.

Előzmény: [877] w, 2014-06-11 22:58:23
[878] csábos2014-06-12 21:41:02

Aranyos feladat, várom az elemi megoldást.

Előzmény: [876] emm, 2014-06-01 01:16:28
[877] w2014-06-11 22:58:23

Legyen &tex;\displaystyle a>1&xet; adott egész szám, és legyen

&tex;\displaystyle a_n=\frac{a^{a^{n+1}}-1}{a^{a^n}-1}.&xet;

Bizonyítsuk be, hogy az &tex;\displaystyle (a_n)_{n=1,2,\dots}&xet; sorozat tagjai páronként relatív prímek.

[876] emm2014-06-01 01:16:28

Ha viszont feltesszük, hogy folytonos a függvény &tex;\displaystyle [0,2e]&xet;-n, akkor már igaz. Lagrange-féle középértéktétellel: &tex;\displaystyle \exists \xi_1\in (0,e),\xi_2\in(e,2e)&xet;:

&tex;\displaystyle 0<f'(\xi_1)=\frac{f(e)-f(0)}{e-0}\implies f(e)=f(0)+ef'(\xi_1)&xet;(1)
&tex;\displaystyle 0<f'(\xi_2)=\frac{f(2e)-f(e)}{2e-e}\implies f(2e)=f(e)+ef'(\xi_2)&xet;(2)

&tex;\displaystyle (1)&xet; és &tex;\displaystyle (2)&xet; összevetéséből:

&tex;\displaystyle f(2e)-f(0)=e(f'(\xi_1)+f'(\xi_2))>0&xet;

Előzmény: [875] Lóczi Lajos, 2014-05-30 20:27:09

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Google   Szerencsejáték Zrt.   Emberi Erőforrások Minisztériuma   Emberi Erőforrás Támogatáskezelő   Oktatáskutató és Fejlesztő Intézet   ELTE   Nemzeti Tehetség Program   Nemzeti
Kulturális Alap