KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Játékszabályok
Technikai információk
TeX tanfolyam
Regisztráció
Témák

 

apehman

Rendelje meg a KöMaL-t!

Reklám:

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - Nehezebb matematikai problémák

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[783] Róbert Gida2015-10-19 17:14:39

Igen, az algebrai &tex;\displaystyle \theta&xet; esete hasonlóan eldönthető.

Racionális &tex;\displaystyle \theta&xet; egy nagyon könnyű eset.

Meglepő módon spec. transzcendens számokra is eldönthető a probléma, saját konstrukció:

Legyen &tex;\displaystyle \theta=\frac {1}{2}\sum_{n=0}^{\infty}\frac{1}{a(n)}&xet;, ahol &tex;\displaystyle a(0)=1&xet; és &tex;\displaystyle a(n)=3^{a(n-1)}&xet;, egy ilyen eset. Liouville eredeti konstrukciójához hasonlóan ez is transzcendens szám, és N=a(2*k)-ra nem teljesül az egyenlőtlenség! (k>0 egész).

Előzmény: [782] Lóczi Lajos, 2015-10-19 11:22:05
[782] Lóczi Lajos2015-10-19 11:22:05

Köszönöm a válaszokat. A [777]-es hozzászólásban szereplő kérdést J. Bell és S. Gerhold egy 2006-os cikkében (On the positivity set of a linear recurrence sequence) az alábbi általánosabb formában olvastam: adott &tex;\displaystyle \theta&xet; valós szám esetén el tudjuk-e eldönteni az &tex;\displaystyle f_n:=\cos(2\pi \theta n)+1+(-1/2)^n&xet; sorozat pozitivitását? Ők a &tex;\displaystyle \theta=\sqrt{2}&xet;, illetve &tex;\displaystyle \theta=2^{1/3}&xet; eseteket említették legegyszerűbb példaként, hogy nem tudják eldönteni.

Viszont ha jól látom, az előző hozzászólásotokban szereplő gondolatmenet (a Liouville-féle &tex;\displaystyle \left|\theta-\frac{p}{q}\right|>\frac{c}{q^d}&xet; alsó becslés effektív &tex;\displaystyle c&xet; konstanssal) az összes algebrai &tex;\displaystyle \theta&xet; esetén el tudja dönteni a kérdést (pl. &tex;\displaystyle \theta=\sqrt{2}&xet; esetén elég az &tex;\displaystyle f_n&xet; sorozat első 11 tagjának pozitivitását külön ellenőrizni; &tex;\displaystyle \theta=2^{1/3}&xet; esetén pedig az első 36 tagét). Gondolom, a transzcendens &tex;\displaystyle \theta&xet; esetek kezelésére egyelőre nincs technikánk.

Mindenesetre megírom a szerzőpárosnak ezt a fórumos fejleményt, és megkérdezem, ők merre haladtak a kérdésben az elmúlt 9 évben.

Előzmény: [781] Róbert Gida, 2015-10-17 23:44:18
[781] Róbert Gida2015-10-17 23:44:18

Igen, ez kell (vagy ennél gyengébb verziója).

&tex;\displaystyle |u\sqrt 2-v|>\frac{1}{2\sqrt 2 u+1}&xet; ez &tex;\displaystyle u=2n;v=2k+1&xet;-re és &tex;\displaystyle \pi&xet;-vel szorozva az egyenlőtlenséget: &tex;\displaystyle |2\pi n\sqrt 2-(2k+1)\pi|>\frac{\pi}{4\sqrt 2 n+1}&xet;

és használjuk a cos Taylor sorát.

A pontos konstans is látható: &tex;\displaystyle cos(2\pi n \sqrt 2) +1-\frac{c}{n^2}\ge 0&xet; teljesül véges sok kivételtől eltekintve, ha &tex;\displaystyle c<\frac{\pi ^2}{64}&xet;.

Előzmény: [780] Fálesz Mihály, 2015-10-17 17:42:35
[780] Fálesz Mihály2015-10-17 17:42:35

Az &tex;\displaystyle n\sqrt2&xet; távolsága a legközelebbi egésztől nagyobb, mint &tex;\displaystyle \frac{1}{2\sqrt2n+1}&xet;.

Előzmény: [779] Lóczi Lajos, 2015-10-17 16:56:21
[779] Lóczi Lajos2015-10-17 16:56:21

Nagyon érdekes, amit írsz. Tudok egy szerzőpárosról, akiket érdekelne egy ilyen típusú bizonyítás (legalábbis pár éve foglalkoztak ezzel). Fel tudnád velem venni email-ben a kapcsolatot (mivel én nem látom a te címed)?

Előzmény: [778] Róbert Gida, 2015-10-16 21:55:36
[778] Róbert Gida2015-10-16 21:55:36

Igaz, sőt sokkal több igaz:

&tex;\displaystyle cos(2\Pi n\sqrt 2)+1-\frac{0.13}{n^2}\ge 0&xet; (itt a 0.13 javítható még, de ez az egyenlőtlenség adja a pontos nagyságrendet: 0.16-ra már végtelen sok ellenpélda van).

Előzmény: [777] Lóczi Lajos, 2015-10-16 00:14:23
[777] Lóczi Lajos2015-10-16 00:14:23

Vajon igaz-e, hogy

&tex;\displaystyle 1+\left(-1/2\right)^n+\cos \left(2 \pi n\sqrt{2} \right)\ge 0&xet;

tetszőleges &tex;\displaystyle n\ge 2&xet; egész szám esetén?

[776] Sinobi2014-08-16 00:27:42

"Bizonyitsd be, hogy egy erintkezo kor es derekszogu hiperbola eseten 0,2 vagy 4 egyenes lehetseges, amely atmegy az erintesi pontokon, es ugyananolyan hosszu hurt metsz ki mindkettobol!"

Ha adottak A, B es O pontok, akkor az olyan P pontok mertani helye, amelyekre APB szogfelezoje atmegy O-n egy inverz derekszogu hiperbola. Erre a mertani helyre peldaul igaz az, hogy ha egy tetszoleges Q pontjabol ket erintot huzunk sajat magahoz, akkor a ket erinto szogfelezoje atmegy az O ponton.

Ennek az allitasnak egy (gyengitett) inverz valtozata, hogy ha egy kor ket helyen erint egy derekszogu hiperbolat, akkor az egyikre ratukrozve a tukorkep kor is ket helyen erinti.

-------

Egy masik megoldas arra, hogy ket erintkezo kupszelethez maximum 4 ilyen egyenes letezik: huzzunk az erintesi pontbol szeloket! Konjugaljuk a szelo kupszeletekkel vett metszespontjaira az erintesi pontot. Akkor kapunk olyan egyenest, amely egyenhosszu szakaszokat metsz ki a ket erintkezo kupszeletbol, ha az erintesi pont konjugalt kepe vagy metszi az egyik kupszeletet, vagy egy idealis pontban van. Konnyu latni, hogy a konjugalt kep mertani helye egy kupszelet (amely erinti a ket gorbet az erintesi pontjaikban), amely tehat ket pontban metszheti a kupszeletet, es me'g kettoben az idealis egyenest.

Ez nem egyszerubb, de gyokeresen mas megoldas. Van-e me'g?

Előzmény: [775] Sinobi, 2014-08-09 18:15:19
[775] Sinobi2014-08-09 18:15:19

"(a ket ellipszis kozos pontjait, es az egyik es a masik tukorkepenek kozos pontjait)"

Bizonyitsd be, hogy egy erintkezo kor es derekszogu hiperbola eseten 0,2 vagy 4 egyenes lehetseges, amely atmegy az erintesi pontokon, es ugyananolyan hosszu hurt metsz ki mindkettobol!

Előzmény: [770] Sinobi, 2014-08-06 18:53:46
[774] HoA2014-08-08 15:09:11

Bár ha metszik egymást, mint írtam...?

Előzmény: [773] HoA, 2014-08-08 15:07:56
[773] HoA2014-08-08 15:07:56

Persze. Eredeti két ellipszisünk is úgy érintkezik, hogy metszéspont nincs.

Előzmény: [772] jonas, 2014-08-07 15:47:01
[772] jonas2014-08-07 15:47:01

Azt akartad mondani, hogy legfeljebb két másik metszéspont van, ugye?

Előzmény: [771] HoA, 2014-08-07 15:39:22
[771] HoA2014-08-07 15:39:22

Pedig én is erre látom a megoldás útját. Középpontos tükrözés után oda vezettük vissza a feladatot, hogy "ha két - nem azonos - érintkező ellipszis metszi egymást, akkor pontosan két metszéspont van."

Persze gondolkodom más megoldáson is.

Előzmény: [770] Sinobi, 2014-08-06 18:53:46
[770] Sinobi2014-08-06 18:53:46

(a ket ellipszis kozos pontjait, es az egyik es a masik tukorkepenek kozos pontjait)

Nem "erre gondolok", letezik teljesen mas megoldas is.

Előzmény: [769] Fálesz Mihály, 2014-08-06 11:55:39
[769] Fálesz Mihály2014-08-06 11:55:39

Arra gondolsz, hogy tükrözzük az egyik ellipszist, és számoljuk meg a közös pontokat?

Előzmény: [768] Sinobi, 2014-08-05 23:34:03
[768] Sinobi2014-08-05 23:34:03

* ha lezezik 3 ilyen egyenes, akkor vegtelen sok van.

[767] jonas2014-08-05 22:52:06

Ezt nem igazán hiszem.

Végy egy tetszőleges ellipszist, és rajta egy pontot. Tükrözd az egyenest erre a pontra, így kapsz egy második ellipszist. A két ellipszis akkor ebben a pontban érinteni fogja egymást. A ponton átmenő majdnem bármely egyenes a két ellipszisből ugyanolyan hosszú szakaszokat metsz ki, hiszen a két szakasz egymás tükörképe a pontra.

Előzmény: [766] Sinobi, 2014-08-05 20:50:01
[766] Sinobi2014-08-05 20:50:01

Talan egy kicsit tul egyszeru ebbe a temaba, de az elozot se lotte le senki.

Bizonyitsd be, hogy ket erintkezo ellipszishez (az erinton kivul) maximum ket olyan egyenes letezik az erintesi ponton at, amely ugyanolyan hosszu szakaszokat metsz ki az ellipszisekbol!

abra:

Előzmény: [704] Sinobi, 2013-09-21 18:43:58
[765] w2014-06-28 15:20:13

És mindez sima De Moivre-képletes játszadozással jön ki (elég az azonosságot &tex;\displaystyle x\in [-1;+1]&xet; esetén belátni, vagyis &tex;\displaystyle x=\cos t&xet; helyettesítéssel). Mint ez vagy ez, csak sokkal egyszerűbb.

Előzmény: [764] Lóczi Lajos, 2014-06-24 22:16:34
[764] Lóczi Lajos2014-06-24 22:16:34

Az első egyenlőség igaz, a második viszont nem.

Előzmény: [763] w, 2014-06-24 10:38:44
[763] w2014-06-24 10:38:44

Legyen &tex;\displaystyle T_n(x)&xet; és &tex;\displaystyle U_n(x)&xet; rendre az &tex;\displaystyle n&xet;-edik elsőfajú és másodfajú Csebisev-polinom. Bizonyítsuk be (vagy cáfoljuk/javítsuk ki, ha esetleg rosszul írtam le) a következő azonosságot:

&tex;\displaystyle 2\sum_{k=1}^n T_k(x)^2=(n-1)+U_n(x)T_n(x)=n+\frac{T_{2n+1}(x)}{2x}.&xet;

[762] csábos2014-05-21 15:48:02

&tex;\displaystyle (x^2-\frac{1}{2}y^2-\frac{1}{2}z^2-\frac{3}{2}xy+\frac{3}{2}yz)^2 + \frac{3}{4}( y^2-z^2-yz+2zx-xy)^2 = (x^2+y^2+z^2)^2 -3x^3y-3y^3z-3z^3x&xet;

Előzmény: [739] w, 2013-11-29 22:31:58
[761] jonas2014-02-17 23:18:13

Az S tartományt algebrai görbe (vagy annak egy része) határolja? Vagyis azon z pontok halmazát keressük, amelyre az f valamelyik gyöke pontosan 1 abszolútértékű. Én azt hiszem, hogy ez egy algebrai görbe, de nem tudom, hogy mennyire könnyű explicit módon fölírni, és hogy hányadfokú lesz.

Előzmény: [760] Lóczi Lajos, 2014-02-17 15:12:07
[760] Lóczi Lajos2014-02-17 15:12:07

Tekintsük az

f(\xi,z):=(11-6z)\xi3-18\xi2+9\xi-2=0

kétváltozós polinomot. Jelölje S azon z komplex számok halmazát, melyekre az f(\xi,z)=0 egyenlet mindhárom \xi1,\xi2,\xi3 gyöke legfeljebb 1 abszolút értékű (a mellékelt ábrán az S halmazt kék szín jelöli).

Tekintsük most azon szögtartományokat a bal félsíkban, melyek egyik határfélegyenese a valós tengely nempozitív fele, a tartomány csúcsa az origó, és a tartomány az S halmaz része (az ábrán a két piros szaggatott vonal közé eső feketével satírozott rész egy ilyen tartomány).

Mekkora a fent definiált tartományok origónál lévő nyílásszögének maximális (és pontos) értéke?

(A megoldásban szereplő maximális szög a numerikus analízisben játszik szerepet: közönséges differenciálegyenletek numerikus megoldásakor az egyik kedvelt algoritmus bizonyos stabilitási tulajdonságát méri.)

[759] marcius82014-01-24 12:46:40

Még egy újabb kérdés jutott az eszembe, de ez már geometria. Adott három egyforma sugarú és végtelen hosszú henger. A hengerek forgástengelyei páronként egymásra merőlegesek és egy pontban metszik egymást. Tekintsük azt a testet, amely egyenlő a három henger közös részével (metszetével). Mekkora ennek a testnek a felszíne és a térfogata?

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Google   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma  
Oktatáskutató és Fejlesztő Intézet   Nemzeti Tehetség Program     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley