Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]  

Szeretnél hozzászólni? Jelentkezz be.
[120] Hajba Károly2004-04-25 09:45:29

Egy kis hazai :o)

27. feladat:

a) Keressünk olyan síklapokkal határolt térbeli idomo(ka)t, mely(ek)nek minden pontját minden ponttal él köt össze.

b) Keressünk olyan síklapokkal határolt térbeli idomo(ka)t, mely(ek)nek minden lapja minden lappal határos.

c) Vajon indokolt-e a többesszám?

HK

[119] lorantfy2004-04-24 01:30:00

Kedves DS!

A megoldásod olvasásakor a bennem működő "hányan értik ezt a középiskolás olvasók közül" műszer mutatója a piros sávba lendült így ne haragudj, de pár megjegyzést is teszek az ábra mellé: X ideális pont az IH egyenesen végtelen távol lévő pontot jelöl.

 (IHGX)=\frac{IG}{GH}: \frac{IX}{XH}=-1

Ez gyakorlatilag azt jelenti: IG=GH.

A szakaszok aránya helyett lehet az O pontból induló őket kimetsző egyenesek által bezárt szögek szinuszainak arányát vizsgálni. (Az X pontot az IH-val párhuzamos OX egyenes "metszi ki".) Ezt jelenti (OI,OH,OG,OX)=-1.

Az AD- ha jól értem - itt az AG egyenest jelenti.

Előzmény: [118] DS, 2004-04-23 14:53:57
[118] DS2004-04-23 14:53:57

Géza bátorított, hogy írjam le a megoldásomat a 22-es feladatra. (A 20-as is megy ennek mintájára.) Legyen az IH egyenes ideális pontja X, a BC oldalhoz írt kör középpontja O. Elég azt megmutatnunk, hogy (IHGX)=-1. Áttérve egyenesekre (OI, OH, OG, OX)=-1 kéne. Nekem kényelmesebbnek tűnt a rájuk merőleges egyenesekkel dolgozni: ezek C és B szögfelezői, a BC oldal és az AG egyenes. Ezek ugyan nem mennek át egy ponton de az egymással bezárt szögek sinusainak arányát így is felírhatjuk. Ez az első három egyenesnél sin tétellel KB:KC, a másik szükséges arány pedig KT:KS. (K a beírt kör középpontja, AD a C és B szögfelezőit T-ben és S-ben metszi.) Az maradt, hogy KB:KC=-KS:KT, ami pedig igaz, hiszen KB:KS=(c-b):a, illetve KC:KT=(b-c):a. Az utóbbi arányokat kiszámolhatjuk pl súlyozgatással, ugyanis a szögfelezők és AD is egyaránt jól ismert arányban metszik a szemközti oldalakat. Remélem Géza megörvendeztet bennünket egy elegánsabb gondolatmenettel.

[117] BohnerGéza2004-04-23 11:11:32

Elég hosszú minden húrnégyszög?

A következő feladat ötlete Csimby ujjgyakorlatok [135]-ben megjelent 42. feladatából adódott. Megoldásával még nem foglalkoztam.

26. feladat: Nevezzük elég hosszúnak a húrnégyszöget, ha szemközti oldalaival párhuzamosan húzott egy-egy vonallal három húrnégyszögre bontható. A kérdés: Elég hosszú minden húrnégyszög? Azaz valamelyik irányban fölbontható?

Az ábrán lévő igen.

[116] lorantfy2004-04-21 09:12:25

25. feladat megoldása: Legyen adott a, \alpha és a szögfelező f. Az A pont nyilván a BC fölé emelt \alpha fokos látóköríven van, az a kérdés mivel tudnánk kimetszeni a körből.

Bárhol is van az A pont a köríven a szögfelező a szemközti BC ív felezőpontján megy át, így F fix pont, ebből kéne körözni d+f sugárral és már meg is lenne az A pont.

Már csak (d+f)-et kell megszerkeszteni. BFD \Delta hasonló ABF \Delta mert van egy közös szögük és FBD \angle = BAF \angle.

 \frac{d}{e}=\frac{e}{f+d}  \implies e^2=d(f+d)

Pont körre vonatkozó hatványa = a szelőszakaszok szorzata segítségével e-ből és f-ből d és d+f megszerkeszthető: \frac{f}{2} sugarú körhöz húzott érintőre az érintési pontból felmérjük e-t. A kapott pontot összekötve a kör középpontjával a rövidebb szelőszakasz d, a hosszabbik d+f.

F pontból (d+f)-el körözve kimetsszük a körből az A pontot.

Előzmény: [115] BohnerGéza, 2004-04-20 20:44:31
[115] BohnerGéza2004-04-20 20:44:31

A 23. és 24. feladathoz hasonló, kicsit nehezebb feladat:

25. feladat: Szerkesztendő háromszög, ha adott egy oldala, a vele szemközti szög és az ehhez tartozó szögfelező. (a szögfelezőnek a háromszögbe eső darabja)

A 20. és 22. feladat egyikének megoldását, ha addig másvalaki nem teszi, kb. a hónap végén közlöm.

[114] lorantfy2004-04-17 15:25:37

24. feladat megoldása: OCE \Delta derékszögű és egyik szöge \gamma fele. Így a beírt kör sugara OE=\varrho szerkeszthető. Ezután ugyanazt a trükköt használjuk, mint az előző feladatban:

Az O pont az AB fölé emelt \delta=180^\circ - \frac{\alpha+\beta}{2}= 90^\circ+\frac{\gamma}{2} látóköríven van.

A látókörívből AB-tól \varrho távolságban futó párhuzamossal kimetsszük az O pontot. Megrajzoljuk a beírt kört. Ebből AO és BO fölé emelt Thálesz körrel kimetsszük E és F pontokat. Majd AE és BF metszéspontja adja C-t.

Előzmény: [113] BohnerGéza, 2004-04-16 14:13:22
[113] BohnerGéza2004-04-16 14:13:22

Kedves László!

Köszönöm a rajzokra vonatkozó tanácsokat!

Kicsit reméltem, hogy a [107]-es hozzászóllásom tovább érvényben marad, hogy az Euklides-szel többen foglalkozzanak. Adok viszont egy nehezebb feladatot:

24. feladat: ABC háromszög beírt körének kp-ja O. Szerkesztendő a háromszög, ha adott c, gamma és OC.

Előzmény: [111] lorantfy, 2004-04-14 00:44:49
[112] Csimby2004-04-14 01:19:36

Van két új geometria példa az újgyakorlatoknál amit eredetileg ide szántak ;-)

[111] lorantfy2004-04-14 00:44:49

Kedves Géza!

Igaz a sejtésed, ugyanis:

Az O pont az AB fölé emelt \delta=180^ \circ - \frac{\alpha+\beta}{2}=90^\circ+\frac{\gamma}{2} látóköríven van.

Ennek a látókörívnek a K középpontjából AB szakasz 2(180^\circ-\delta)=2(90^\circ-\frac{\gamma}{2}) = 180^\circ -\gamma szögben látszik. Tehát a látókörív középpontja valóban a \Delta köré írt körön van.

A szerkesztés akkor történhet úgy, hogy felvesszük a körülírt kört és abba az AB oldalt, mint húrt. Ennek felező merőlegese kimetszi a körből a K1, K2 pontokat. Ezekből, mint középpontokból megrajzolhatjuk az AB fölé emelt látókörívek körbe eső íveit. Ezekből az AB-től r távolságban futó párhuzamosok kimetszik a a beírt kör középpontját.

BAO \angle-t megduplázva, a szögszár kimetszi C-t a körből.

Előzmény: [108] BohnerGéza, 2004-04-13 21:49:21
[110] Pach Péter Pál2004-04-14 00:34:02

23. feladat megoldásának vázlata

Adottak r,R,a. Az ismert d2=R2-2Rr-ből megvan d is, ami a két kör középpontjának távolsága, d szerkeszthető is. :-) Rajzolunk két kört R, illetve r sugárral úgy, hogy középpontjaik távolsága d. R és a segítségével megkapjuk \alpha-t (ez az eddigiektől független lépés), azoknak a pontoknak a helye, amelyekből a beírt kör \alpha szög alatt látszik, egy olyan kör, amely a beírt körrel koncentrikus, és a sugara egyszerűen megkapható. (Megszerkesztjük egy pontját, ez is megy körzővel…) A kapott körnek és a köréírt körnek a metszéspontja A, érintőket húzunk a beírt körhöz, ezek A-tól különböző metszéspontja a köré írt körrel B és C, valamilyen sorrendben. Ha van ilyen ABC háromszög, akkor azt megkaptuk.

Diszkusszió…

Előzmény: [106] Gubbubu, 2004-04-13 10:13:43
[109] lorantfy2004-04-13 23:29:47

Kedves Géza és Fórumosok!

Én az Euklides programból a következőképpen nyerem ki a színes ábrát:

1.Az Euklidesben megszerkesztett képet beállítom szépen középre, fehér háttérrel és a Print Screen gombbal a vágólapra másolom.

2.A Pain rajzoló programban Beillesztés, majd kijelölöm az ábra megfelelő részét és átmásolom egy új lapra.

3.Az ábra külső méretét a lehető legkisebbre veszem. Itt még a feliratokat és a betűzést is lehet pontosítani, pl. görög betűt a szögeknek stb. Majd elmentem „gif” formátumban.

4.Ezt az ábrát már fel lehet tölteni a Fórumba.

Annyit szoktam még csinálni az ábrával, hogy még bitmap (bmp) formában megnyitom az MS. Photo Editorral és átlátszó hátteret adok neki, majd ezután mentem „gif” formátumban. Igy az ábrát feltöltve az alapszinen (sárga) jelenik meg.

Aki tud egyszerűbbet írja be!

Előzmény: [108] BohnerGéza, 2004-04-13 21:49:21
[108] BohnerGéza2004-04-13 21:49:21
[107] BohnerGéza2004-04-13 21:27:32

A 23. feladathoz: Csak pár percem volt, csak az Euklides-szel (szerkesztőprogram, letölthető az euklides.hu-ról) néztem meg. Megadtam az A és B pontot, a körülírt kört. majd „nyomvonal” segítségével kirajzoltattam az ABC beírt körének kp-jának helyeit, ha a C végigfut a körön. Úgy tűnik, hogy a körülírt körben lévö két olyan ívet kaptam, melyek a körülírt körön lévő kp-ú körök ívei. A rajz remélem segít, bár sajnos a terjedelmi korlát miatt nem túl jó. Sőt most valamiért nem is sikerül a feltöltése. (Szívessen venném, ha valaki segítene, hogy lehet jobb ábrát felrakni!)

Ha igaz a fenti sejtés, akkor az alapján a szerkesztés megy. Bizonyítással próbálkozom majd.

[106] Gubbubu2004-04-13 10:13:43

23.feladat: Szerkesszünk háromszöget, ha adott egy oldala, illetve a beírt és a körülírt kör sugara.

Megjegyzés: még csak 5-6 percet tudtam gondolkodni e feladaton, lehet hogy az átlagnál nehezebb, az is hogy nagyon könnyű.

[105] BohnerGéza2004-04-05 10:00:57

Kedves Csimby!

Észrevételed, segítséged helyes, de kiegészítésként: Az összes Apollonios-feladat megoldható inverzió nélkül is. (101. hozzászolás) Talán ezzel is segítettem valakinek.

A 21. feladat átfogalmazásához: Hiperbola ill. ellipszis: Azon kőrők középpontjainak mértani helye (halmaza), melyek átmennek az egyik fókuszon és érintik a másik fokusz közáppontú 2a (nagytengely) sugarú kört.

[104] Csimby2004-04-04 23:12:03

A 21. feladat-hoz csak annyit mondanék segítségnek, hogy inverzió!

[103] lorantfy2004-03-30 08:19:47
Előzmény: [102] BohnerGéza, 2004-03-29 15:55:10
[102] BohnerGéza2004-03-29 15:55:10

A 22. feladat: Legyen az ABC háromszög BC oldalához írt körének BC-n lévő érintési pontja G. Igazold, hogy az AG-re G-ben állított merőlegesnek a B ill. C csúcsnál lévő külső szögfelező közti szakaszát G felezi!

[101] BohnerGéza2004-03-29 15:49:36

Egy ábra [99] Csimby 21. feladatához.

A feladat nehéz, ez csak segítség.

A k1 és k2 kört érintő P-n átmenő kört érintő kör a szerkesztendő. A H hasonlósági pont? A P' szerkesztésével egy másik feladatra vezettük az eredeti átfogalmazását!

[100] BohnerGéza2004-03-23 14:59:39

22. feladat: A 20. feladat alapján fogalmazzuk meg az analóg új feladatot. (beírt kör érintési pontja helyett ...) Megoldása természetesen hasonlóan megy, mint a 20-é.

Gondolkodom, van-e értelme egy olyan új fórumtémának, melynek neve "Új" feladatok . Ebben, a fórumban megjelent feladatok alapján, analóg feladatokat, átfogalmazásokat, vagy a megoldásuk során felmerült, ott kitalált új feladatokat írhatnánk meg. A tanításban és tanuláskor is jól jöhetnek az ilyen ötletek.

Például a 21. feladat átfogalmazása: Adott két kör és egy pont. Szerkesszük meg a két kört érintö, a ponton áthaladó kört.

[99] Csimby2004-03-22 22:32:07

21.feladat Szerkesszük meg körzővel és vonalzóval két hiperbola metszéspontjait, ha a két-két fókuszpont közül kettő egy pontba esik.(Tehát adott a 3 fókuszpont és a két főtengely hossza)

[98] lorantfy2004-03-19 13:38:54

Kedves Géza!

Jó a feladat! Felteszek hozzá egy ábrát.

Előzmény: [97] BohnerGéza, 2004-03-19 11:20:27
[97] BohnerGéza2004-03-19 11:20:27

20. feladat: Legyen az ABC háromszög beírt körének BC-n lévő érintési pontja D. Igazold, hogy az AD-re D-ben állított merőlegesnek a B ill. C csúcsnál lévő belső szögfelező közti szakaszát D felezi!

[96] lorantfy2004-03-09 22:11:26

Kedves Péter és Zormac!

Kösz a szép megoldásokat!

Előzmény: [95] Pach Péter Pál, 2004-03-09 18:16:18

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]