Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]  

Szeretnél hozzászólni? Jelentkezz be.
[273] Kós Rita2005-07-26 19:31:42

A lekepezesek szorzatarol rovidebben-hosszabban Reiman Istvan konyveiben is van szo: Fejezetek az elemi geometriabol (Typotex, pici vekony, ebben biztosan), ill. A geometria es hatarteruletei c. konyvben, ha jol emlekszem.

Előzmény: [272] BohnerGéza, 2005-07-15 23:09:11
[272] BohnerGéza2005-07-15 23:09:11

Az 50., 51., 53. és 56. feladat közös, általános megoldása.

Igen örülök lorantfy és Kós Géza 56. feladatra a [267]-ben ill. [268]-ban leírt megoldásának. Ezek is alkalmasak az általánosításra.

Ha valaki még nem ismeri a leképezések szorzatát, annak is megérthető amit írok, de időt és energiát kell rá szánnia, végigjátszva-gondolva minden állítást!

A téma bővebb megismeréséhez Rácz János könyveit tudom ajánlani, de ezek nehezen érhetők el. Rossz memóriám miatt további könyveket most nem tudok, remélem lesz valaki és kisegít!

Jelölje az A körüli alfa forgatást (A|alfa). Legyen

(1)...(C|gamma)*(B|béta)*(A|alfa)=I helybenhagyás.

//A leképezések szorzatát - egymás utáni elvégzését - visszafelé olvasva kell értelmezni, tehát először A, majd B, végül C körül forgatunk,// Helybenhagyást akkor kapunk, ha összesen n*360 fokot, ahol n egész, forgatunk és van fixpont. Ez a fent jelzett feladatok esetén áll. Az egyszerűség kedvéért és mert ilyen esetre ezen feladatok mindig visszavazethetők n=1 (vagy -1) esettel foglalkozunk.

Tudnunk kell még, hogy egy forgatás helyettesíthető két tengelyes tükrözés szorzatával, pl. (A-alfa)=t2*t1, ahol t1 és t2 is átmegy A-n, valamint t1 és t2 szöge alfa fele az irányítást is figyelembe véve. (1)-et balról (C|-gamma)-val szorozva:

(2)...(B|béta)*(A|alfa)= (C|-gamma)

Legyen t2=AB, t1 és t3 pedig olyan egyenesek, melyekre (A|alfa)=t2*t1 és (B|béta)=t3*t2. Ekkor

(3)...(B|béta)*(A|alfa)=(t3*t2)*(t2*t1)=t3*(t2*t2)*t1=t3*t1= (C|-gamma)

Tehát t1 és t3 is átmegy C-n. Mindent végiggondolva ABC olyan háromszög kell legyen, melyben a megfelelő csúcsoknál alfa/2, béta/2 ill. gamma/2 szög van. //Feltéve, hogy egyik szög sem n*360 fok, azaz mind a három forgatás valódi fogatás. //

Jó munkát a fent jelzett feladatok átgondolásához! Kitalálható esetleg újabb konkrét feladat is?!

Előzmény: [268] Kós Géza, 2005-07-11 12:00:08
[271] Hajba Károly2005-07-11 16:43:28

Köszi a továbbképzés. Tényleg egyszerű.

De talán már nem olyan egyszerű azon zárt görbe megszerkesztése, mely görbe bármely pontjára azonos a PA+PB+PC hossz nagysága. Ezen görbe elfajult esete az I pont is.

HK

Előzmény: [270] lorantfy, 2005-07-11 15:40:54
[270] lorantfy2005-07-11 15:40:54

Kedves Károly!

A tétel igaz: Ha az ABC hegyesszögű háromszög síkjában lévő P pontra igaz, hogy AP+BP+CP összeg minimális, akkor P a háromszög izogonális pontja (melyből mindhárom oldal 120 fokos szögben látszik.)

A bizonyítás nagyon szép és egyszerű. Forgassuk el a B pont körül a BCP háromszöget 60 fokkal. Mivel BP'P háromszög egyenlő oldalú, ezért az APP'A' törött vonal hossza megegyezik az AP+BP+CP összeggel. Az A' helyzete P-től független. APP'A' hossza akkor minimális, ha P és P' az AA' egyenesre illeszkedik. Ez pedig akkor van, ha APB\angle és BPC\angle 120o, vagyis ha P az izogonális pont.

Előzmény: [269] Hajba Károly, 2005-07-11 13:31:23
[269] Hajba Károly2005-07-11 13:31:23

Üdv!

Érdekesnek tűnik a háromszög I pontja más szempontból is, mintha erre a pontra igaz, hogy PA + PB + PC hossz a legrövidebb, ahol A, B, C a háromszög csúcsai, míg P egy tetszőleges pont a síkjukban. Bizonyítani nem tudom, csak ráleltem. Ha igaz, gondolom egy -általam nem- ismert tétel.

Egy adtok egy kis továbbképzést vagy címeket, megköszönném. :o)

O.

Előzmény: [268] Kós Géza, 2005-07-11 12:00:08
[268] Kós Géza2005-07-11 12:00:08

Legyen az AC'B és BA'C köré írt körök B-től különböző metszéspontja I. Az AC'BI és BA'CI húrnégyszögek szögeiből AC'B\angle=BA'C\angle=120o. Ebből következik, hogy CB'A\angle=120o, vagyis az I pont a CB'A körön is rajta van.

Ha az ABC háromszög mindegyik szöge 120 foknál kisebb, akkor I a háromszög izogonális pontja. Ha valamelyik szög éppen 120 fok vagy annál nagyobb, akkor nincs izogonális pont, és az ábra kicsit máshogy néz ki, de a három kör akkor is egy ponton megy át.

Az IA'', IB'', IC'' szakaszok (egyenesek) páronként 120 fokos (60 fokos) szöget zárnak be. Az A''B'', B''C'', C''A'' egyenesek két-két kör centrálisai, amik merőlegesen felezik az IA'', IB'', IC'' közös húrokat. Ezek az egyenesek tehát szintén páronként 60 fokos szöget zárnak be egymással.

Előzmény: [267] lorantfy, 2005-07-10 17:00:12
[267] lorantfy2005-07-10 17:00:12

Nem szeretném, ha Géza szép feladata feledésbe merülne!

56. feladat megoldása: Helyezzük a koord.rsz. origóját a háromszög S súlypontjába.

Legyen

\vec{SA}=\vec{a}=(a_1;a_2)\quad
\vec{SB}=\vec{b}=(b_1;b_2)\quad
\vec{SC}=\vec{c}=(c_1;c_2)

Fejezzük ki \vec{SA"} vektort ezek segítségével!

\vec{SF_A}=(-\frac{a_1}{2};-\frac{a_2}{2})

\vec{F_AA"} pedig \vec{CB} 90 fokos, pozitív irányú elforgatottjának \frac{\sqrt{3}}{6}-szorosa.

\vec{F_AA"}=\frac{\sqrt{3}}{6}(c_2-b_2;b_1-c_1)

\vec{SA"}=\vec{SF_A}+\vec{F_AA"}=(\frac{\sqrt{3}}{6}c_2-\frac{\sqrt{3}}{6}b_2-\frac{a_1}{2};\frac{\sqrt{3}}{6}b_1-\frac{\sqrt{3}}{6}c_1-\frac{a_2}{2})

Hasonlóan:

\vec{SB"}=\vec{SF_B}+\vec{F_BA"}=(\frac{\sqrt{3}}{6}a_2-\frac{\sqrt{3}}{6}c_2-\frac{b_1}{2};\frac{\sqrt{3}}{6}c_1-\frac{\sqrt{3}}{6}a_1-\frac{b_2}{2})

Az origó körüli 120 fokos, pozitív irányú forgatás mátrixa:

\left[\matrix{cos 120^\circ &sin 120^\circ \cr -sin 120^\circ & cos 120^\circ \cr}\right]=
\left[\matrix{-\frac{1}{2}&\frac{\sqrt3}{2}\cr\frac{-\sqrt3}{2} &-\frac{1}{2} \cr}\right]

Ezzel beszorozva \vec{SA"}-t és felhasználva, hogy a,b,c vektorok összege 0, vagyis a koordinátákra is:

a1+b1+c1=0,  a2+b2+c2=0

\vec{SB"}-t kapjuk. Tehát igaza van Dánielnek (=tudniakarok): valóban egyenlő oldalú háromszöget kapunk.

[266] Lóczi Lajos2005-07-06 13:04:55

Esetleg érdemes lehet keresgélni a háromszög jelenleg 3055 nyilvántartott nevezetes pontja között

http://mathworld.wolfram.com/KimberlingCenter.html

és az itteni hivatkozásokban, különösképp

http://faculty.evansville.edu/ck6/encyclopedia/

Jó böngészést! :)

Esetleg egy geometriai rajzprogram is segíthet a kísérletezgetésben.

Előzmény: [264] papi, 2005-07-06 08:37:07
[265] papi2005-07-06 08:54:13

Bocsánat ! Természetesen az előbb Torricelli pontot akartam írni (papi)

[264] papi2005-07-06 08:37:07

Kedves Barátaim ! A h-szög nevezetes pontjainak a köré írható körre vonatkozó hatványait keresgélem. A S-pont, M-pont, beírt kör Kpontja és a Lamoine-féle pont esetében már rájöttem e hetványokra. De a Tossicelli-pontnál elakadtam. Tud valaki segíteni? (papi)

[263] Lóczi Lajos2005-07-04 23:46:42

Csak kiegészítésképpen írom, hogy a "négyzetes közelítés" az idézett Newton-módszerben persze nem azt jelenti, hogy a szereplő deriváltpolinom épp másodfokú, hanem azt, ahogyan a hiba nagysága csökken: a numerikus módszerek elméletéből ismert, hogy a Newton-módszer gyorsan konvergál, ha megfelelően közelről indítjuk a tényleges megoldástól (azaz z0-t "elég közel" választjuk meg a keresett értékhez, ami jelen esetben z0=1 mellett jó, de általában a pontos vonzási tartomány fraktálbonyolultságú alakzatokból áll, l. pl. http://mathworld.wolfram.com/NewtonsMethod.html)

A konvergencia a jelen esetben olyan gyors, hogy |z3-cos (10o)|\le2.10-7, majd |z4-cos (10o)|\le3.10-14, aztán |z5-cos (10o)|\le7.10-28, stb.

(A hatványsoros közelítés előnye, hogy a kezdeti értékkel nem kell bajlódni, de a konvergencia nem ennyire gyors: az n. lépésben a hiba ott n faktoriálissal arányos.)

Előzmény: [261] jonas, 2005-07-02 10:28:45
[262] Lóczi Lajos2005-07-04 22:49:50

:-)

A szinusz kiszámolásának lánctörtes alakja nem hangzott még el, l. http://mathworld.wolfram.com/Sine.html

Előzmény: [261] jonas, 2005-07-02 10:28:45
[261] jonas2005-07-02 10:28:45

Az igaz, hogy a koszinusz (illetve a hatványsorba fejtése) többet mond az értékről, mint a komplex köbgyökös kifejtés.

Ennek ellenére a harmadfokú egyenlettel is lehet valamit kezdeni, ha már nadorp kiszámolta. Persze ha a megoldóképletet alkalmazzuk rá, akkor sinust kell számolni, de megoldhatjuk közvetlenül a harmadfokú egyenletet valamilyen közelítéssel. Nem nehéz négyzetes közelítést kapni:

 p(z) = 4 z^3 - 3 z - \sqrt3/2

p'(z)=12z2-3

z0=1

zn+1=zn-p(z)/p'(z)

Ekkor zn\tocos (10deg)=0.98481

Előzmény: [256] Lóczi Lajos, 2005-06-29 20:38:19
[260] Lóczi Lajos2005-06-30 10:50:02

Rosszul emlékeztem, nem "tétel"-t, hanem "vizsgakérdés"-t említett. De ez már filozófia. Attól függ, milyen kontextusban van szükség a válaszra. Numerikus matematikai szempontból a táblázat tökéletes, de elméleti szempontból nem mindig.

Előzmény: [259] Lóczi Lajos, 2005-06-30 10:43:26
[259] Lóczi Lajos2005-06-30 10:43:26

Én is ugyanazt mondtam, mint az első 2 bekezdésed, viszont pontosan megadtam, melyik értékre kell gondolni, tehát nem értem a problémát. És ez nem a megoldóképlet baja, hanem a köbgyöké, mint jelölésé, hiszen a komplex köbgyök nem is függvény. A valós négyzetgyök \pm-os megállapodásához hasonló megállapodást persze lehet tenni (és pl. a számítógépes programcsomagokban mindig van is ilyen), hogy a "köbgyök-jel" például mindig a (0 és 2\pi közé eső) legkisebb irányszögű komplex számok jelentse, és akkor már nincs semmi gond a megoldóképletekkel.

Viszont az, hogy kikeresel valamit egy táblázatból, szerintem sosem helyes válasz egy matematikai kérdésre, mert nem konstruktív és nem mutat rá a miértre, pláne nem bizonyítás (az eredeti kérdésben "tételt" említett a hozzászóló).

Előzmény: [258] Fálesz Mihály, 2005-06-30 07:03:33
[258] Fálesz Mihály2005-06-30 07:03:33

A megoldóképlettel az is baj, hogy például az Általad felírt alak a gyököket az 50o+k.120o és a 100o+k.240o szögfüggvényeivel fejezi ki.

Szóval nem jutottunk közelebb, de most már 9, ugyanannyira felírhatatlan szám közül kell kiválasztani a 3 gyököt, amik közül csak az egyik sin 260o, a másik kettő hamis gyök...

Szerintem a helyes válasz az lett volna, hogy (a Függvénytáblából kiolvasva)

sin 260o=sin (180o+80o)=-sin 80o\approx-0,9848.

Előzmény: [256] Lóczi Lajos, 2005-06-29 20:38:19
[257] Lóczi Lajos2005-06-29 20:44:07

Persze korrekt válasz az is, ha a szinusz-értéket kifejezed a megfelelő oldalhosszú és szögű derékszögű háromszögben a megfelelő oldalak arányával.

És még végtelen sok korrekt válasz létezik, amely sin (260o) értékét más matematikai dolgokhoz, objektumokhoz kapcsolja.

Előzmény: [254] Stegi, 2005-06-28 18:50:34
[256] Lóczi Lajos2005-06-29 20:38:19

A harmadfokú egyenlet itt sajnos épp olyan, hogy minden gyöke valós, de a megoldóképletében a komplex számok nem kerülhetők ki. (Ez a középkor óta már sokakat idegesített :-)

A három megoldás közül a minket érdeklő most ez:

\frac{\left(2 i-2 \sqrt{3}\right)^{2/3} \left(1-i
   \sqrt{3}\right)+2\cdot {2}^{1/3} \left(1+i
   \sqrt{3}\right)}{2^3 {(i-\sqrt{3})}^{1/3}},

ahol i a komplex képzetes egység és a köbgyökök három lehetséges értéke közül ügyesen kell megválasztani a megfelelőt: a nevezőben szereplő komplex szám 1/3-ik hatványa az a komplex szám, melynek irányszöge 5\pi/18, nagysága 21/3, a számlálóban szereplő komplex szám 2/3-ik hatványa pedig az a komplex szám, melynek irányszöge 5\pi/9, nagysága pedig 2.21/3 -- ahol természetesen 21/3 a "közönséges" valós köbgyök.

Ez tehát -sin (260o) értéke. A fentiekből látszik, hogy ha ilyen formában, algebrai úton válaszolom meg a kérdést, akkor tulajdonképpen semmilyen "kezelhető", "kézzelfogható" információt nem mondtam a keresett szinusz-értékkel kapcsolatban. "A formula szép, de semmire sem jó."

Ellenben itt egy sokkal szebb és hasznosabb formula, az analízis nyelvén:

\sin(260^\circ)=\sum_{n=0}^\infty \frac{(-1)^{n+1} \left(\frac{4 \pi }{9}\right)^{2n+1}}{(2 n+1)!},

amiből tetszőleges pontossággal ki is lehet számolni a szinusz értékét.

Előzmény: [255] nadorp, 2005-06-29 16:01:16
[255] nadorp2005-06-29 16:01:16

sin 260o=-sin 80o=-cos10o.

Ismert, hogy cos 3\alpha=4cos3\alpha-3cos \alpha,azaz

cos30o=4cos310o-3cos 10o

4\cos^310^o-3\cos10^o-\frac{\sqrt3}2=0

Ez egy harmadfokú egyenlet cos10-re, ami megoldható megoldóképlettel ( ezt már nem írnám le). Szerintem a feladatra ez a korrekt válasz, de nem tudom, hogy a harmadfokú egyenlet tananyag-e ott, ahol tanulsz. Ha középiskolás vagy, akkor úgy tudom nem, ha máshová jársz, akkor attól tartok igen.

Előzmény: [254] Stegi, 2005-06-28 18:50:34
[254] Stegi2005-06-28 18:50:34

Sziasztok!

Nagyon egyszerű, mégsem tudom. Kérek segítséget. Ez egy vizsgakérdés : "Mennyi sin 260fok?" Mi rá a korrekt válasz?

Köszönom a segítséget.

[253] BohnerGéza2005-06-13 10:11:08

Doom [247.] hozzászolásában lévő feladat megoldása.

Az alábbi megoldásnál tekintsük C-t a helyvektorok kezdőpontjának!

Előzmény: [247] Doom, 2005-06-09 16:21:15
[252] BohnerGéza2005-06-13 10:03:43

Doom feladatára 2. megoldás: Ha szögfelező, tükrözzünk rá!

Előzmény: [247] Doom, 2005-06-09 16:21:15
[251] Doom2005-06-10 16:07:35

Köszönöm mindenkinek a sok megoldást! Fálesz 2. megoldása szerintem is nagyon ötletes! :)

[250] Fálesz Mihály2005-06-10 07:38:40

Sziasztok,

Szerintem próbáljatok meg geometriaibb megoldásokat is kitalálni. Sok mindent ki lehet számolni, de az ilyen megoldások elrejtik a feladatok matematikai szépségeit, a kívülállónak meg azt a hamis képet mutatják, hogy csak ilyen megoldás van.

Érdemes lehet próbálkozni azzal, hogy a C csúcsból invertálunk. (Ez arra jó, hogy harmonikus közepet számtani középre cseréljük.) Utána már semmilyen számolás nem kell, csak egy ügyes segédpont, de ezt már találjátok ki Ti.

Mondanék két alternatív, kicsit számolós, de azért rövid utat is.

1. A szögfelezővektor a két oldalvektor súlyozott átlaga, a súlyokat a szögfelező-tételből megtdhatjuk. Aztán... (Valószínűleg innen jött a feladat is.)

2. Írjuk fel a CAB, CAF és CFB háromszögek területét az a,b,f szakaszokkal és a C-nél levő szögekkel.

Üdv.

F.M.

Előzmény: [249] levi, 2005-06-09 22:41:50
[249] levi2005-06-09 22:41:50
Előzmény: [247] Doom, 2005-06-09 16:21:15

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]