Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]  

Szeretnél hozzászólni? Jelentkezz be.
[425] jonas2006-05-08 23:05:06

Hát igen, ehhez készült az ábra eredetileg.

Ugyanannyiféleképpen, mint ahány n-2 darab egyesből és n-2 darab mínusz egyesből álló sorozat van, aminek minden részletösszege pozitív. A bizonyítás levezethető az eredeti ábra postscript forrásából.

Ezzel, remélem, még nem árulok el sokat.

Elmondom majd a bizonyítást, ha érdekel valakit.

Előzmény: [423] Csimby, 2006-05-08 21:49:32
[424] Csimby2006-05-08 21:52:04

Sorry, legyen inkább az előző a 74. feladat :-)

Előzmény: [423] Csimby, 2006-05-08 21:49:32
[423] Csimby2006-05-08 21:49:32

75. feladat Egy szabályos n-szöget átlóival n-2 db. háromszögre daraboltunk. Hányféleképpen tehetjük ezt meg?

[422] jonas2006-05-08 21:15:22

Lehet, hogy sokan ismerik a következő feladatot.

73. feladat. Ha egy 2n+1 oldalú szabályos sokszöget 2n-2 átlóval háromszögekre bontunk, akkor milyen határok között változhat a keletkező háromszögek közül a hegyesszögűek száma?

Segítségül itt egy ábra.

[421] Vonka Vilmos Úr2006-05-02 09:43:54

Ez egy érdekes probléma. Nekem az a gyanúm, hogy ezen a projektív geometria nem tud segíteni. Ha ugyanis megadjuk pl az A, B, C, D pontokat, akkor ahogy kísérletezgettem GeoGebrában, úgy látom, előfordulhat, hogy akár 3 olyan ellipszis is van, aminek ezek pontjai, és A valamelyik tengely végpontja. Ha pedig 3 vagy több megoldás van, akkor hiába is keresünk jó szerkesztési eljárást. Persze az, hogy A a nagytengely, és nem a kistengely végpontja, az egy további szűkítés - ezt azonban projektív módon megfogni nehézkes, legfeljebb úgy tudom elképzelni, hogy valahogyan azt próbáljuk meg kihasználni, hogy a valós fókuszok egyenesén van rajta. Nekem ez sajnos nem sikerült.

Érdekes azonban, hogy ha A, B, C, D egy körön van, akkor már létezik nagyon egyszerű szerkesztési eljárás a tengelyek irányára: projektív eszközökkel ugyanis meg lehet mutatni, hogy akkor az AB, CD egyenesek szögfelezői párhuzamosak lesznek a keresett ellipszis tengelyeivel.

Előzmény: [418] Morci, 2006-04-26 12:00:31
[420] Vonka Vilmos Úr2006-05-02 09:34:08

Ha az ellipszis 5 pontját ismerjük, akkor projektív módon projektív sugársorok metszési alakzataként tudjuk előállítani. A sugársorok közötti projektív leképezést három megfelelő elempár határozza meg, így ha kiválasztjuk az adott A és B pontokat, mint tartópontokat, akkor az AC, AD, AE egyeneseknek megfelelő BC, BD, BE egyenesekkel megadtunk egy, a kúpszeletet meghatározó projektivitást. Ha a sugársorokat metszük az adott (e) egyenessel, akkor az e egyenesen projektív pontosorokat kapunk. Ebben a projektivitásban az önmagának megfelelő pont adja az egyenes és a kúpszelet metszéspontját. Így erre a projektivitásra a Steiner-féle kettőselem-szerkesztést alkalmazva kapjuk meg a keresett metszéspontokat. A Steiner-féle kettőselem-szerkesztésnél a síkon felvett tetszőleges körre annak egy tetszőleges pontjából rávetítjük a projektivitás megfelelő pontpárjait. Kiválasztva (az ábrán például) a C1' és C2' pontokat, rendre a C2', D2', E3' és C1', D1', E1' pontokat vetítve belőlük, perspektív sugársorokat kapunk. Ezen perspektivitás tengelye a kört a P1', P2' pontokban metszi, ezeket visszavetítve az (e) egyenesre, megkapjuk a keresett kettőspontokat.

Előzmény: [419] HoA, 2006-05-02 08:55:07
[419] HoA2006-05-02 08:55:07

Milyen Steiner-szerkesztésre gondolsz? Ezen a néven nem találtam olyan szerkesztést, mely egy pontjaival adott ellipszis és egy egyenes metszéspontjait adná meg.

Előzmény: [407] Vonka Vilmos Úr, 2006-04-07 11:25:57
[418] Morci2006-04-26 12:00:31

Köszönöm a segítséget.

Átgondolom, kipróbálom, lehet lesz még kérdésem... nem ismerem mindegyik dolgot amit leírt, de rákeresgetek. (Nem matematikával-geometriával foglalkozom alapvetően.)

A probléma abban módosult, hogy kiderült nem 5 pont, hanem négy pont alapján kellene előállítani az ellipszist. A pontok közül 1 db az speciális azaz a nagytengely egyik végpontja. a többi 3 darab teljesen általános. Ebben kérnék segítséget. Próbáltam már kérdezgetni több felé, elvileg ez csak számítással oldható meg?

Üdv. Morci

Előzmény: [407] Vonka Vilmos Úr, 2006-04-07 11:25:57
[417] Sirpi2006-04-17 00:53:23

Szerintem érdemes próbálkoznod ebben a topikban. A külön témát, amit nyitottál, töröltem, a linknél teljesen jó helye van a kérdésednek.

Előzmény: [416] kenez, 2006-04-16 00:46:57
[416] kenez2006-04-16 00:46:57

Az informatikus kollégáktól kérnék segítséget. A probléma a következő. Van egy kockám, és szeretném azt megforgatni egy programmal. 1. kérdés : hogyan számítom ki a 8 csúcspont koordinátáit, ha elforgatom őket x,y,z tengely körül, és mi ennek a matematikai alapja(csak hogy értsem is hogy megy!), 2. kérdés : 3D - 2D leképezés módszere érdekelne nagyon részletesen. Ja és még valami. Van még ingyen letölthető szerkesztőprogi az Euklidesen kívül? Köszi mindenkinek! Kenéz

[415] kenez2006-04-16 00:20:28

Kösz, HoA, látod, néha még egy mondat is csodákra képes.... A helyzet az, hogy ebbe valóban nem gondoltam bele, mivel a szerkesztésnél annyira evidens volt, és látható, hogy nem gondoltam, hogy bizonyítani kéne. Mivel látványos volt a dolog, abba se gondoltam bele, csak akkor lehet trapéz, ha van egy párhuzamos oldalpárja. Hát nincs is neki. Ennyit erről. Kicsit jobban figyelni(Ezt magamnak mondom!).

[414] HoA2006-04-15 22:45:14

Ábra (igaz, fejjel lefelé) mellékelve. Segítség: Miből gondolod, hogy pl. ABED húrtrapéz? AE és BD párhuzamosságát bizonyítani kellene.

Előzmény: [412] kenez, 2006-04-15 18:20:50
[413] kenez2006-04-15 18:27:05

Az ábrát elfelejtettem feltenni!

[412] kenez2006-04-15 18:20:50

Hello mindenkinek! Megoldottam egy feladatot, mindjárt le is írom a szövegét, a megoldásom viszont nem volt jó, nagyon szeretném, ha valaki megcáfolná az én megoldásomat, megmondaná, miért nem helyes. Köszönettel: Kenéz A feladat: Középkori építészek használták a következő szerkesztést a szabályos ötszög előállítására: Rajzoltak egy négyzetet, aztán megrajzolták a négyzet oldalaival párhuzamos szimmetriatengelyeket, majd a négyzet bele- és köréírt körét. A négyzet A oldalfelező pontját összekötötték a körülírt kör PQ átmérőjének végpontjaival. A négyzet beírt körét az AP és PQ szakaszok a B és E pontokban, a négyzet alsó felét adó KLMN téglalap átlói pedig a C és a D pontokban metszik. Az ABCDE pontok alkotják az ötszöget. Valóban szabályos ez az ötszög?

Az én megoldásom: Behúzva az AD BE CE BD szakaszokat, húrtrapézokat kapunk. Az ABED húrtrapézból : AB = ED. CEAB húrtrapézból : CB = AE. DABC húrtrapézból : AB = CD Eddig : AB = ED = CD EBCD húrtrapézból : CB = ED Tehát : AB = ED = CD = CB = AE Tehát ez egy olyan ötszög, amelynek minden oldala egyenlő, vagyis szabályos. Hol van a hiba a logikámban?

[411] HoA2006-04-15 15:52:08

[409] után a 68. - 70. - 71. feladatok tkp. a [388] -ban felvetett egyenlőtlenség szemléletes bizonyításai. Adjuk fel 72. feladat-ként az egyenlőtlenség trigonometriai - ábrát nem igénylő - bizonyítását.

Érdekességképpen megemlítem, hogy a tételre a Matematikai Versenytételek 1897(!!)-i egyik feladataként is rátaláltam. Igaz, ott az állítás nem ilyen éles, csak a

sin(\alpha/2) * sin(\beta/2) * sin(\gamma/2) \le 1/4

igazolását tűzték ki. A megoldás 1/8 -ra is szerepel.

Előzmény: [409] BohnerGéza, 2006-04-12 00:44:01
[410] Hajba Károly2006-04-12 07:38:44

Kedves Géza!

Ha jól vettem az adást, akkor gyakorlatilag a szögek és térszögek közötti összefüggést, hasonlóságot az érintő ill. érintősík elfordulás, elmozdulás mértékében kell, lehet keresni.

Mégegyszer köszi a tájékoztatód.

Előzmény: [405] Kós Géza, 2006-04-05 13:21:05
[409] BohnerGéza2006-04-12 00:44:01
[408] BohnerGéza2006-04-12 00:42:11

A következő hozzászólásban használom az alábbiakat:

[407] Vonka Vilmos Úr2006-04-07 11:25:57

Legyenek az ellipszis adott pontjai A, B, C, D, E!

1. A Pascal-tétel segítségével szerkeszthető pl. a C és D pontbeli érintő, ezek metszéspontját jelölje F!

2. Mivel F polárisa a CD egyenes, a CD irányához konjugált irányú átmérő áthalad az F ponton, valamint CD felezőpontján (G) is. Tehát FG (e) az ellipszis egy átmérő egyenese.

3. Legyen a D-n keresztül e-vel húzott párhuzamos egyenes f! A Pascal-tétel segítségével szerkeszthető f és az ellipszis másik metszéspontja (I). Az e-hez konjugált átmérő áthalad DI felezőpontján (J) és párhuzamos CD-vel: legyen ez a g egyenes.

4. A Steiner-szerkesztés segítségével megszerkeszthetőek e és g metszéspontjai az ellipszissel (LM, NO). Így megkaptuk az ellipszis egy konjugált átmérőpárját.

5. Egy konjugált átmérőpár ismeretében pl. Rytz-szerkesztéssel szerkeszthetőek az ellipszis tengelyei.

Előzmény: [406] Morci, 2006-04-06 21:59:18
[406] Morci2006-04-06 21:59:18

Üdv!

Segítséget szeretnék kérni. Netes keresőben itt dobott ki Pascal tétellel kapcsolatban infót, így gondoltam itt próbálok segítséget kérni.

Az a problémám, hogy egy ellipszis pontjai adottak, s nekem meg kell szekesztenem az ellipszist. A Pascal tétel alapján pontszámot tudok "bővíteni", illetve az itt talált ábra alapján még a nagytengely irányát is meg tudom határozni, viszont az ellipszis és a kör affin aránya ismeretlen, ezért nem lehet ezzel tovább lépni az ellipszis felől...

Van valamilyen módszer ellipszis szerkesztésére ha pár alkotó pontja adott csak?

Előre is köszönöm a segítséget!

[404] Hajba Károly2006-04-06 08:30:41

Kedves Géza!

Tájékoztatód köszönöm, elkezdem megemészteni. :o)

Előzmény: [405] Kós Géza, 2006-04-05 13:21:05
[405] Kós Géza2006-04-05 13:21:05

Kedves Károly,

Már régóta tervezgetem, hogy egyszer majd kimerítőbben válaszolok a kérdésedre, de eddig nem jutottam hozzá. Lehet, hogy most is csak egy részét írom le.

A térben egy csomó dolog nem igaz úgy, mint a síkon, egyes dolgok pedig teljesen elvesznek. Pl. a síkon egy üres rácsháromszög, aminem a csúcsai rácspontok, de sem a kerületén, sem a belsejében nincsenek további rácspontok, mindig 1/2 területű. A térben a megfelelő állítás nem igaz, egy üres rácstetraéder térfogata akármilyen nagy lehet.

A szögek összegének létezik a térben megfelelője, de nincs szoros kapcsolata a csúcsoknál előforduló térszögek összegével. Ha például egy tetraédert kilapítasz úgy, hogy konvex négyszöggé fajul, a térszögek mindegyike 0-hoz fog tartani.

Ami a szögek összegének megfelel, az a görbület integrálja. A síkban egy egyszerű zárt töröttvonal esetén a külső szögek összege 2\pi, illetve egy kétszer folytonosan differenciálható egyszerű görbén a görbület ívhossz szerinti integrálja 2\pi. Ha a görbe/töröttvonal nem egyszerű, akkor az eredmény 2\pi-szer az irány körülfordulásainak száma.

A térben egy elég sima, egyszerű zárt felületen a Gauss-görbület felszín szerinti integrálja mindig 4\pi.

A poliédereket tekinthetjük sima felületek limeszének. pl. Minden élt lekerekítünk egy hengerpalásttal, a csúcsokat pedig gömbfelületekkel. (Most tekintsünk el attól, hogy ez nem mindig lehetséges, mondjuk szorítkozzunk a konvex poliéderekre.) A síklapokon és a hengerpalástokon a Gauss-görbület 0. A csúcsoknál a görbület integrálja a megfelelő gömbsokszög területe. A gömbsokszögeket összetolhatjuk egyetlen gömbbé, aminek a felszíne 4\pi.

A gömbsokszögecskék területét másképp is kiszámolhatjuk.

Számoljuk össze egy csúcsnál a lapok szögeit. (Nem a lapsíkok közötti szögeket, hanem mindegyik lapnak az adott csúcsnál levő szögét.) Ha a szögek \alpha1,...,\alphan, akkor a gömbsokszög szögei \pi-\alpha1,...,\pi-\alphan, a területe pedig 2\pi-(\alpha1+...+\alphan). Ha ezt az összes csúcsra kiszámoljuk és összeadjuk, akkor a csúcsok számát meg kell szoroznunk 2\pi-vel és ki kell vonnunk az összes lap összes szögének összegét.

Legyen a csúcsok, élek, lapok száma C, E és L. Az egyes lapok éleinek száma legyen e1,...,eL. Ekkor persze e1+...+eL=2E, mert minden él két laphoz tartozik. Az i-edik lapon a szögek összege (ei-2)\pi, az összes lap összes szögének összege tehát (e1-2)\pi+...+(eL-2)\pi=(e1+...+eL-2L)\pi=(E-L)2\pi.

A görbület integrálja a teljes felületen C.2\pi-(E-L)2\pi=(C-E+L)2\pi=4\pi.

A dolog egyrészt vicces, mert megjelenik a poliédertétel (C-E+L=2), ugyanakkor mindezt Gauss-görbület integrálása nélkül is tudtuk, és sem lap, sem térszögek nem jelentek meg...

Előzmény: [402] Hajba Károly, 2006-04-03 23:35:54
[403] HoA2006-04-04 13:56:15

A [388] egyenlőtlenség és a 68. feladat közötti kapcsolatról:

Legyen BOC \angle=\alpha , COD \angle=\beta , DOA \angle=\gamma,\alpha+\beta+\gamma=\pi . Ekkor OAF \angle=\alpha/2 , DO = R ; FO = m = R*sin(\alpha/2), FA = d = R*cos(\alpha/2), FOD \angle=\epsilon=\beta-(\pi/2-\alpha/2)=\beta+\alpha/2-\pi/2

FD2=r2=DO2+FO2-2*DO*FO*cos\epsilon=R2*(1+sin2(\alpha/2)-2*sin(\alpha/2)*cos\epsilon)

n2=d2-r2=R2*(cos2(\alpha/2)-1-sin2(\alpha/2)+2*sin(\alpha/2)*cos\epsilon)=R2*(-2*sin2(\alpha/2)+2*sin(\alpha/2)*cos\epsilon)=

2R2*sin(\alpha/2)*(cos\epsilon-sin(\alpha/2)) .

A [388] egyenlőtlenségben válasszuk úgy a betűzést, hogy \beta\ge\gamma teljesüljön és ennek megfelelően legyen D közelebb A-hoz mint C-hez. Ekkor \epsilon=\beta+\alpha/2-\pi/2\ge\beta/2+\gamma/2+\alpha/2-\pi/2=0 , cos\epsilon=sin(\beta+\alpha/2) , n2=2R2*sin(\alpha/2)*(sin(\beta+\alpha/2)-sin(\alpha/2))

Felhasználva a sin(u+v) - sin(u-v) = 2*cos(u)*sin(v) azonosságot

n2=4R2*sin(\alpha/2)*cos((\beta+\alpha)/2)*sin(\beta/2)=4R2*sin(\alpha/2)*sin(\gamma/2)*sin(\beta/2)

Előzmény: [388] BohnerGéza, 2006-03-14 12:02:36
[402] Hajba Károly2006-04-03 23:35:54

Üdv!

A Wolfram-on kicsit kutakodva ill. az SH Atlaszban találtam még néhány dolgot, de egy kicsit elgondolkoztam én is a témán. (Magad uram, ha szolgád nincsen.:o)

Ismert, hogy egy gömbháromszög területe T_\Delta = \sum_{i=1}^3\alpha_i-\pi. Ezen minimális gömbi sokszöghöz adott szomszédos pontpárjukat egyesítve újabb háromszög illeszthető. Így tetszőleges n-sokszög állítható elő, akár konkáv is. Ezen sokszög területe, melyet nem nehéz belátni, T=\sum_{i=1}^n\alpha_n-(n-2)*\pi

Ezen gömb középpontjából kiinduló és a sokszög pontjaira illesztett félegyenesek a pontok sorrendje szerint a félegyenesek közötti síkok által meghatározott térrész a T-vel arányos térszöget határoz meg.

A gömbi sokszög adott csúcspontjára illesztett és a gömböt érintő sík a csúcsba befutó két gömbi egyenes és gömbközéppont által meghatározott két síklapra merőleges. Ezért a két síklap által bezárt szög azonos a csúcsponti szöggel.

Fentiekből következik, hogy egy síkidom adott csúcspontjához tartozó szomszédos lapok által meghatározott szögek összege és a lapok által meghatározott térszög mértéke között szoros összefüggés áll fenn a fenti képlet szerint.

Újabb érdekes összefüggések adódnak egy idom lapszögeinek és térszögeinek összegei között, de erről később, ha addig valaki nem tesz be egy ezirányú összefoglaló linket. Mert biztos van erről irodalom, legfeljebb még nem bukkantam rá.

Előzmény: [398] Lóczi Lajos, 2006-03-29 22:21:15
[401] HoA2006-04-03 15:36:57

1.) C-t - és ezzel BC-t - rögzítve, a CD * DA szorzat akkor maximális, amikor az ACD \Delta területe, hiszen \delta és így sin\delta is állandó, vagyis ha D az AC ív felezőpontja (ld. Jenei [395]). Ugyanez mondható D rögzítése esetén a BC * CD szorzatról, tehát C a BD ív felezőpontja. A két feltétel együttesen akkor következik be, ha C és D helyzete a [386] második ábrája szerinti.

2.)Így már világos a kapcsolat a [388]-ban feladott egyenlőtlenséggel: a vizsgált szorzat tkp.

2R*sin\frac{\alpha}2 * 2R*sin\frac{\beta}2 * 2R*sin\frac{\gamma}2

, ahol \alpha+\beta+\gamma=\pi . Azon még gondolkodom, a 68-as feladat hogyan következik az egyenlőtlenségből.

Előzmény: [399] BohnerGéza, 2006-03-30 08:02:53

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]