Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]  

Szeretnél hozzászólni? Jelentkezz be.
[59] Kristóf Miklós2004-02-18 12:55:21

Kedves Mindenki! Lehet-e téglalapot kirakni az alábbi alakzatból?

Bocs, nem tudom felrajzolni.Mindent egy sorba ír ez. Így kell rajzolni: Két lépés le, egy lépés jobbra, egy lépés jobbra fel, egy lépés balra, egy lépés balra fel. Ez tehát egy konkáv ötszög. A kirakást természetesen négyzethálós papíron kell elképzelni.

[58] Kós Géza2004-02-16 13:51:32

Csak egy apróság a projekítv geometria kedvelőinek.

Azt, hogy a súlyvonalak egy ponton mennek át, a Desargues-tétel megfordításával érdemes (és érdekes) kapcsolatba hozni. (Ezt is a feleségemtől tanultam. :-))

Előzmény: [54] BohnerGéza, 2004-02-10 23:50:33
[57] BohnerGéza2004-02-15 21:31:44

Kedves László és Fórumosok!

László észrevétele teljesen jogos, nem egyszerű a javasolt megoldás, így további útmutatást adok. ( Nem gondoltam végig, ráadásul elszámoltam az Y vektort. )

A megoldás lényege a következő: A-ból B-be és D-be mutató vektorok és a gamma ismeretében a trapéz adott, a delta meghatározza X-et. Az AY párhuzamos XC feltétel meghatározza Y-t, tehát bétát is (deltától függ). Ehhez kihasználjuk majd, hogy ha pD=qB, akkor p=q=0, mivel d és B nem egyirányú vektorok. A béta ismeretében igazolható a BX párhuzamos YD. A megoldás befejezését most is az érdeklődőkre bízom. Jóval egyszerűbb a számolás, ha a helyvektorok kezdőpontjának a szárak metszéspontját vesszük, ezt is javaslom végigszámolni azoknak, akik még keveset foglalkoztak vektorokkal.

[56] lorantfy2004-02-13 10:48:13

Kedves Géza és Fórumosok!

Természetesen bármilyen módszerrel adott megoldást szivesen látok a 14. feladatra. Azért szeretném ha megoldaná valaki a Papposz tétel felhasználásával is, hogy a [44] és [45] hozzászólásom ne legyen hiábavaló.

Persze Géza megoldási javaslatát is be kellene fejeznie valakinek...(Remélem Géza nem sértődsz meg érte, de szerintem a bafejezés nem mindenkinek nyilvánvaló!) Segítségül egy ábra:

Előzmény: [55] BohnerGéza, 2004-02-13 00:38:12
[55] BohnerGéza2004-02-13 00:38:12

Mindenkitől elnézést kérek, de az 54. hozzászólásban sikerült második 14. feladatot összehoznom, ezért az eredetire, a 46-ban szereplőre mutatok egy megoldási lehetőséget. Tudom, a feladat kitűzője nem erre a módra gondolt, de így is lehet. Ajánlom mindazoknak, akik a vektorokkal való számolást még nem "érzik".

A 46. hozzászólásban szereplő ábra jelöléseit használjuk.

[54] BohnerGéza2004-02-10 23:50:33

(Téma: Ahhoz, hogy három nem párhuzamos egyenes egy pontban metszi egymást elég megmutatni, hogy van olyan pont, melyet tükrözve az első, a tükörképet a második, majd a harmadik egyenesre, visszajutunk az eredeti pontba.

Ezt használva könnyen megmutatható, hogy a háromszög oldalfelezőmerőlegesei egy pontban metszik egymást. Ismerve az – még nem biztosan létező, hiszen most akarjuk belátni, hogy van középpontjuk – érintőkörök tulajdonságait, a szögfelezőkhöz – három belső, vagy két külső és a harmadik belső – is találunk ilyen pontot. A magasságvonalakkal kapcsolatban:

14. feladat: Jelöljük az ABC háromszög magasságegyeneseit a-val, b-vel, c-vel, a és c metszéspontját M-mel, az M középpontú B-n áthaladó kört k-val, a béta szögfelezőjének k-val való metszéspontját P-vel. Mutassuk meg, hogy P segítségével igazolható, hogy a magasságegyenesek egy pontban metszik egymást.

A súlyvonalakkal kapcsolatban még nem jutottam biztos eredményre, de:

15. feladat: Az ABC háromszögben legyen p az alfa belső, q és r a béta ill. gamma külső szögfelezője, S ezek metszéspontja, F az S-ből a BC-re állított merőleges talppontja. Q-t és R-t az AF-re F-ben állított merőleges metszi ki q-n ill, r-en. Bizonyítandó, hogy F a PQ felezőpontja!

A feladat bizonyítása megy, csak azt nem látom, hogy - a fenti feladatban - abban a PQR háromszögben, melynek S a súlypontja az A segítségével belátható-e, hogy a súlyvonalak egy pontban metszik egymást.

A témával kapcsolatban szívesen fogadok segítséget (irodalom, feladatok).

[53] Csimby2004-02-10 22:21:39

Igen Onogur erre gondoltam, de sajnos ha van is még ilyen eset, túl sok háromszöget kell elhelyezni.

Talán érdekes lehet, a természet hogyan old meg a hasonló feladatot: (http://hydra.nat.uni-magdeburg.de/packing/packing.html)

[52] Hajba Károly2004-02-10 00:40:33

Kedves Csimby!

Ha jól értelmeztem a 13/b feladatodat, akkor arra lennél kiváncsi, hogy létezik-e még olyan a amire s egész. Én a=16-ra s=2,976+ eredményt hoztam ki, míg a=17-et nem sikerült s=3-ba belerakni. Így, ha létezik, az magasabb régiókban található.

HK

Előzmény: [49] Csimby, 2004-02-07 19:09:25
[51] Hajba Károly2004-02-09 00:32:26

Kedves Osztogatók!

Közreadom a 12. feladatra a saját megoldásomat, az alábbi megjegyzésekkel: (1) Úttörőbecsületszavamra kijelentem, hogy nem kukkoltam más honlapokra :o) (2) mivel több napig csak ritkán kerültem gépközelbe, így csak most tudtam a feladattal komolyabban foglalkozni. (3) Megoldást csak iteratív módszerrel sikerült készítenem (4) de cserében felszerkesztettem László változatát is a szögméréshez (\beta).

\alpha=36,88445849... \beta=35,33...

S az ábrák:

Előzmény: [37] Csimby, 2004-02-04 19:59:04
[50] lorantfy2004-02-07 22:12:38

Kedves Csimby!

Kösz a jó feladatokat. A 13-ast láttam a Stetson-on, ezt nem találtam meg, igy kénytelen voltam próbálkozni. Megszerkesztettem, és így már valamivel meggyőzőbb.

Előzmény: [49] Csimby, 2004-02-07 19:09:25
[49] Csimby2004-02-07 19:09:25

Kedves Lorantfy!

Szerintem jó a megoldásod, másik két megoldás található a feladatra a következő címeken: http://www.stetson.edu/~efriedma/tis/iso01.gif http://www.stetson.edu/~efriedma/tis/iso11.gif

Kedves Onogur!

Ez is jó, gratula! 13.b feladat Vajon a 7-en kívül más a darabszámra is igaz, hogy a db egység oldalú szabályos háromszöget el lehet helyezni egy olyan négyzetben amelynek oldalhossza a többszöröse (ennél kissebb oldalhosszú négyzetben viszont nem, persze ezt nem kell bizonyítani, nekem elég ha "úgy tűnik")? (a=15-ig "úgy tűnik" nincsen más ilyen lásd.: http://www.stetson.edu/~efriedma/triinsqu/)

[48] lorantfy2004-02-07 14:10:38

12. feladat megoldása: Jól néz ki, de nem biztos, hogy létezik! Ha van kedve valakinek számoljon utánna, lehet-e mindegyik háromszög derékszögű az ábrán!

Előzmény: [37] Csimby, 2004-02-04 19:59:04
[47] Hajba Károly2004-02-07 01:54:24

13. feladat megoldása:

Előzmény: [37] Csimby, 2004-02-04 19:59:04
[46] lorantfy2004-02-07 00:15:18

14. feladat: Vegyük fel az ABCD trapéz AD szárán az X, BC szárán az Y pontot.

Bbh. ha AY párhuzamos CX egyenessel, akkor DY is párhuzamos BX egyenessel !

Előzmény: [45] lorantfy, 2004-02-07 00:02:03
[45] lorantfy2004-02-07 00:02:03

Kedves Fórumosok!

Csak most jön a 10.c) feladat megoldása: A Papposz tételt szeretnénk alkalmazni, tehát 3-3 egy egyenesre eső pontot kell keresnünk. Mivel azt kell bizonyítanunk, hogy AY és CX egyenesek C3 pontban, a szögfelezőn metszik egymást, így a 2-2 pont már meg is van és kell még 1-1 pontot keresnünk az AB illetve BC egyeneseken, úgy, hogy a keletkező két új metszéspont a szögfelezőn legyenek. Ekkor a tételből már következne, hogy C3 is a szögfelezőn van.

Hát nem lesz könnyű megtalálni a hiányzó két pontot, minthogy a végtelenben vannak. Tehát csak párhuzamost kell húznunk X pontból BC-vel és Y pontból AB-vel és ezek metszéspontja lesz C2. A C1 pont pedig egyszerűen D. Ez a két pont nyilván rajta van a szögfelezőn, hiszen egy rombusz szemközti csúcsai, így aztán a Papposz tételből következően C3 pont, AY és CX egyenesek metszéspontja is a szögfelezőre esik.

Sajnos ennyiből még mindig nem úsztátok meg. Most Nektek kell bizonyítani! Mégpedig azt, hogy tudjátok alkalmazni Papposz tételét egy másik feladatban!

Előzmény: [44] lorantfy, 2004-02-06 23:11:33
[44] lorantfy2004-02-06 23:11:33

Kedves Csillag és Fórumosok!

Már egyszer felvetődött, hogy ez a feladat Papposz tételére vezethető vissza. Akkor rajzoltam egy ábrát és nem láttam hogyan. Most, hogy újra előjött rászántam egy kis időt és most megpróbálom úgy leírni, hogy azoknak is érthető legyen, akik nem akarják átnyálazni a Hajós könyvet.

10.c) feladat megoldása Nézzük először mit állít Papposz tétele: Ha A1, A2, A3 pontok egy egyenesen vannak és B1, B2, B3 pontok is egy egyenesre esnek és A1B2 metszéspontja A2B1 egyenessel C3, A1B3 metszéspontja A3B1 egyenessel C2, A2B3 metszéspontja A3B2 egyenessel C1 akkor C1, C2, C3 pontok is egy egyenesen vannak.

Ha valaki csak ez alapján próbálja alkalmazni a tételt a feladatra nehezen fog menni. Ahhoz tudnia kell még, hogy a tétel "elfajuló" esetben is igaz, pl. akkor, ha A3 és B3 pontok a végtelenben vannak (ideális pontok). Ilyenkor a jobb oldali ábrán látható, szögszárakkal párhuzamos egyenesek metszéspontjaként keletkezik C1 és C2 pont. Na ez az eset kell nekünk a paralellogrammában!

Előzmény: [29] Csillag, 2004-02-02 20:05:04
[43] jenei.attila2004-02-06 13:29:56

Kedeves Csillag!

Köszönöm szépen a kiigazítást, most már világos hogy miről van szó. Egyébként a cikkeket elolvastam, rendkívül érdekesek, mindenkinek ajánlom.

Előzmény: [42] Csillag, 2004-02-05 23:52:31
[42] Csillag2004-02-05 23:52:31

Kedves Attila!

Igazad van, félreérthető voltam. Egy néhány éve megírt cikk (Martin Gardner: Penrose-csempézés + +) foglalkozik ezzel a témával és tisztázza a fogalmakat. Azok a csempézések, amikkel Penrose foglalkozott, olyan elemekből épültek fel, amelyekből csak nem periodikus csempézés készíthető. A Hajba Károly/Onogur által megadott csempével viszont készíthető periodikus csempézés is.

"A legjelentôsebb megoldatlan probléma persze az, hogy van-e egyetlen alakzat, mellyel nem periodikusan csempézhetô a sík. A legtöbb szakértô szerint nincs, de senki nem jutott még csak közel sem a bizonyításhoz. Még azt sem bizonyították, hogy ha van ilyen csempe, akkor az nem lehet konvex."

Remélem a cikk érthetőbb lesz, mint az én megfogalmazásaim:)

GB

Előzmény: [41] jenei.attila, 2004-02-05 09:53:23
[41] jenei.attila2004-02-05 09:53:23

Kedves Csillag!

Most egy kicsit összezavartál aperiodikus parkettázás ügyében. Legutóbbi hozzászólásodból számomra az derül ki, hogy jelenleg legalább két csempe kell ehhez, ahogy Penrose is csinálta. Ugyanakkor Onogur azt állítja, hogy az általa megadott egyetlen csampével is lehetséges az aperiodikus parkettázás. Most akkor mi az igazság?

Előzmény: [38] Csillag, 2004-02-04 21:28:41
[40] Csimby2004-02-05 09:07:34

Semelyik kettő ne legyen egybevágó!

[39] lorantfy2004-02-05 08:33:06

Kedves Csimbi!

A 12. feladathoz annyi lenne a kérdésem, hogy a 7 háromszög között nem lehetnek egybevágóak, vagy csak annyi a kikötés, hogy nem lehet mind egybevágó?

Előzmény: [37] Csimby, 2004-02-04 19:59:04
[38] Csillag2004-02-04 21:28:41

Tisztelt Érdeklődők!

Nem Penrose foglalkozott először a sík nem periodikus csempézésével. Eredetileg 25000 körüli volt a sík nem periodikus lefedéséhez használt különböző csempék száma, majd 100. Ezt a számot Rafael Robinson 6-ra javította, és azon dolgozott, hogy minimális számú különböző csempével fedhesse le a síkot (nem periodikusan). Penrose ezután jött elő egy szintén 6 csempéből álló halmazzal, amit később leegyszerűsített 2 eleműre. Roger Penrose-ról pl. a következő könyvben olvashatunk: Staar Gyula: Matematikusok és teremtett világuk, Vince Kiadó

GB

Előzmény: [36] Hajba Károly, 2004-02-04 10:38:02
[37] Csimby2004-02-04 19:59:04

12. Feladat

Osszunk fel egy négyzetet 7 db hasonló, de nem egybevágó háromszögre.

13. Feladat

Pakoljunk bele 7 db 1/2 oldalhosszúságú szabályos háromszöget egy egység oldalú négyzetbe, átfedések nélkül.

[36] Hajba Károly2004-02-04 10:38:02

Kedves Attila!

Igen Penrose jött ki előszőr ilyenekkel, elő kellene keresnem a régi KöMaL számokat, de talán az archívumba már fel van rakva a '70-es évek vége, abban foglalkoztak e témával.

A matematikai hátterében nem vagyok mélyen benne, csak autodidakta módon és szintem, de szakmám miatt folyamatosan "edzésben tartom" a térlátásomat, így a "parkettázás" a hobbimmá vált. Továbbá egy jó kis CAD rendszer a kezem alá dolgozik, tehát az elképzelt megoldásokat könnyen ki is próbálhatom. Az eredményeket magad is láthatod korábbi képeimnél.

HK

Előzmény: [35] jenei.attila, 2004-02-04 10:13:38
[35] jenei.attila2004-02-04 10:13:38

Kedves Károly!

Nagyon szép a 4. feladatra adott megoldásod. A középponton átmenő körívekkel való felosztásig én is eljutottam, aztán valami olyasmire gondoltam, hogy bizonyos idomok egyes határvonalait kellene elhagyni, olyanokat amelyek a középpontot tartalmazzák. Így egyfajta félig nyílt alakzatok jöhettek volna létre, de tovább nem jutottam, meg amúgy sem lett volna az "igazi" megoldás.

A parkettázós témában úgy látom otthon vagy, a legutóbbi hozzászólásodban ha jól értem ún. aperiodikus parkettázást adtál meg. Úgy tudom először ilyet Roger Penrose adott meg, nem kis meglepetést okozva ezzel matematikus körökben. Az ő parkettázása ha jól emlékszek két különböző alakzatot használ. Ezzel kapcsolatban mit tudsz, vagy ha valamit rosszul értettem, kérlek javíts ki.

Üdvözlettel: Jenei Attila

Előzmény: [30] Hajba Károly, 2004-02-03 13:06:53

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]