KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Játékszabályok
Technikai információk
TeX tanfolyam
Regisztráció
Témák

 

Rendelje meg a KöMaL-t!

Támogatóink:

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Reklám:

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - GEOMETRIA

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]    [39. oldal]    [40. oldal]    [41. oldal]    [42. oldal]    [43. oldal]    [44. oldal]    [45. oldal]    [46. oldal]    [47. oldal]    [48. oldal]    [49. oldal]    [50. oldal]    [51. oldal]    [52. oldal]    [53. oldal]    [54. oldal]    [55. oldal]    [56. oldal]    [57. oldal]    [58. oldal]    [59. oldal]    [60. oldal]    [61. oldal]    [62. oldal]    [63. oldal]    [64. oldal]    [65. oldal]    [66. oldal]    [67. oldal]    [68. oldal]    [69. oldal]    [70. oldal]    [71. oldal]    [72. oldal]    [73. oldal]    [74. oldal]    [75. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[1878] csábos2014-10-03 09:09:14

Kiindultam a HoA féle szinuszos egyenletből. Felvettük ,,véletlenszerűen" az együtthatók értékeit, és ekkor &tex;\displaystyle \cos\alpha&xet;-ra egy negyedfokú egyenletet kaptunk. Az a kérdés, hogy ennek az egyenletnek a gyökei szekeszthetőek-e. Az egy igazi jó kizáró ok lenne, ha ez egy harmadfokú, &tex;\displaystyle Q&xet; fölött felbonthatalan polinom lenne. Sajnos nem az. Ha valaki találna paramétereket úgy, hogy ez egy első és harmadfokú szorzata lenne, és az elsőfokú gyöke nem megoldás, akkor nyilvánvalóbb lenne az indoklás. Ezért kis érdeklődés és lapozgatás után rábukkantam arra az összefüggésre, hogy ha találunk egy olyan prímet, ami fölött ennek a polinomnak van fölbonthatatlan, páratlanfokú osztója, akkor nem szerkeszthető a gyöke. Kézenfekvő volt az 5.

Előzmény: [1876] Bátki Zsolt, 2014-10-02 20:43:53
[1877] csábos2014-10-02 21:38:13

Nem látom, hogy D ismerete nélkül hogyan kapjuk meg B-t O-hoz és A-hoz.

Előzmény: [1876] Bátki Zsolt, 2014-10-02 20:43:53
[1876] Bátki Zsolt2014-10-02 20:43:53

Nem mindent fogtam fel. Bennem lehet a hiba. A köbgyök 3 meggyőzőnek tűnik, mivel ezt javasoltam is. Itt egy új gondolatmenet. (Nem tudom, hogy kell rajzot küldeni) Vegyünk egy egység kört az origóban. Vegyünk fel egy D pontot rajta, ami a keresendő minimális távolságú A-tól és B-től. Vegyük fel az A-t az x tengelyen. Ekkor könnyen meghatározható az a félegyenes (f) D-ből indul és amin a B-nek kell lennie. Legyen 'e' egyenes ami az x koordinátával bezárt szöge háromszorosa a AOD szögnek, és az origóból indul. Nyilván az 'e' és 'f' metszéspontja jó megoldás a B pontra.

Tehát O,D,A ismeretében B szerkeszthető. (ebben a speciális esetben) De O,A,B esetén D nem szerkeszthető, mert ahhoz a AOB szöget harmadolni kellene tudni. Remélem világos volt és nem rontottam el semmit.

Tehát általános esetben nem szerkeszthető.

(az hogy általános szög nem harmadolható, az bizonyított, de nem egyszerű)

[1875] csábos2014-10-01 22:54:59

Mindig mondta a matektanárom, hogy a térszemléletem olyan, mint a döglött kacsáé.

Akkor számoljunk. &tex;\displaystyle \cos\phi=a&xet;, &tex;\displaystyle \sin\phi=\sqrt{1-a^2}&xet;, &tex;\displaystyle t=1&xet;, &tex;\displaystyle u=\frac{1}{2}&xet;, &tex;\displaystyle v=2&xet;,&tex;\displaystyle w=3&xet; helyettesítéssel a

&tex;\displaystyle t\cos2\phi+u\sin2\phi=v\cos\phi+w\sin\phi&xet;

egyenletből

&tex;\displaystyle (2a^2-1)+a\sqrt{1-a^2}=2a+3\sqrt{1-a^2}&xet;

lesz. Átrendezve

&tex;\displaystyle 2a^2-2a-1=(3-a)\sqrt{1-a^2}&xet;

és négyzetre emelve, majd rendezve

&tex;\displaystyle 5a^4-14a^3+8a^2-8 =0 &xet;

adódik. Modulo 5 véve

&tex;\displaystyle a^3+3a^2-3 &xet;

Ennek nincs gyöke modulo 5. Tehát a bővítés foka &tex;\displaystyle F_5&xet; fölött 3, így &tex;\displaystyle Q&xet; fölött a 3 többszöröse, tehát nem szerkeszthető.

Előzmény: [1874] jonas, 2014-10-01 06:04:14
[1874] jonas2014-10-01 06:04:14

Azért, mert az &tex;\displaystyle A_1M&xet; szakasz inverze nem lesz egyenes.

Előzmény: [1873] csábos, 2014-09-30 20:55:52
[1873] csábos2014-09-30 20:55:52

Nem értek valamit. Ha egyszer egyenlő szögeket keresünk, akkor miért nem invertáljuk az A pontot a körre (A1), majd a képet összekötjük a B-ponttal. Ahol metszi a kört (M-ben), ott a megfelelő szögek és tükörképeik is megegyeznek. Vagy megint elnéztem valamit?

Előzmény: [1872] HoA, 2014-09-30 16:02:07
[1872] HoA2014-09-30 16:02:07

A nem-szerkeszthetőség irányában ( vázlat, ha valakit érdekel, részletezem )

Kínálja magát a komplex síkon tárgyalás. Válasszuk úgy a koordinátarendszert és a hosszegységet, hogy C legyen az origóban és D az egységsugarú körön. Ekkor d ( = CD ) egységvektor. Az egyenlő szögekből következik, hogy (( a -d ) / d) x (( b -d ) /d ) valós. Ebből d = &tex;\displaystyle e^{i\phi}&xet; -vel &tex;\displaystyle \phi&xet; -re

&tex;\displaystyle t \cdot cos 2\phi + u \cdot sin 2\phi = v \cdot cos \phi + w \cdot sin \phi &xet;

alakú egyenlet adódik, ahol az együtthatók az adatokból szerkeszthetőek. Már csak erről kéne megmutatni, hogy általában euklideszi módon nem szerkeszthető a megoldás.

( Ellenpélda: Két adott ponton átmenő, adott kört érintő kör középpontja : legyen itt is az adott egységsugarú kör középpontja, C az origóban, az érintési pont D, A és B a körön kívül. Ekkor d ( = CD ) egységvektor, a szerkesztendő kör középpontja O = kd ( k valós ) . Felírva az | A - O | = k - 1 ill. | B - O | = k - 1 egyenleteket , d = &tex;\displaystyle e^{i\phi}&xet; -vel &tex;\displaystyle \phi&xet; -re itt

&tex;\displaystyle v \cdot cos \phi + w \cdot sin \phi = z&xet;

alakú egyenlet adódik, ahol az együtthatók az adatokból szerkeszthetők, és mint ismert ekkor &tex;\displaystyle cos \phi&xet; -re másodfokú egyenletet kapunk szerkeszthető együtthatókkal. )

Előzmény: [1868] Bátki Zsolt, 2014-09-23 18:19:23
[1871] emm2014-09-25 03:05:56

És már az elején elvi hibás, vissza az egész.

Előzmény: [1870] emm, 2014-09-25 02:58:38
[1870] emm2014-09-25 02:58:38

Hullafáradtan egy próbálkozás, 100%, hogy elszámolva, de valami ilyesmi: Legyen az ellipszis két fókuszpontja &tex;\displaystyle (c,0)&xet; és &tex;\displaystyle (-c,0)&xet;, a kör sugara egységnyi, középpontja &tex;\displaystyle (u,v)&xet;. Ekkor azt az &tex;\displaystyle a>c&xet;-t keressük (nagytengely), amire

&tex;\displaystyle x^2(c^2-a^2)+y^2a^2=a^2(c^2-a^2) &xet;

&tex;\displaystyle (x-u)^2+(y-v)^2=1 &xet;

egyenletrendszernek 1 megoldása van. Vagyis:

&tex;\displaystyle x^2(c^2-a^2)+y^2a^2=a^2(c^2-a^2)((x-u)^2+(y-v)^2) &xet;

-nek egy megoldása van. Mivel ez a megoldás egyértelmű, ezért a diszkrimináns 0.

&tex;\displaystyle -4 a^2 (a - c) (a + c) (-a^2 u^2 + c^2 u^2 - a^2 v^2 + a^4 v^2 + c^2 v^2 - a^2 c^2 v^2 + 2 a^2 v y - 2 a^4 v y - 2 c^2 v y + &xet;

&tex;\displaystyle + 2 a^2 c^2 v y + y^2 - 2 a^2 y^2 + a^4 y^2 + c^2 y^2 - a^2 c^2 y^2)=0 &xet;

Ez is egyértelmű &tex;\displaystyle y&xet;-ra, így a diszkrimináns ismét 0, így &tex;\displaystyle a&xet;-ra az egyenlet:

&tex;\displaystyle 64 (-1 + a) a^4 (1 + a) (a - c)^3 (a + c)^3 (-u^2 + a^2 u^2 -c^2 u^2 - v^2 + a^2 v^2)=0 &xet;

Aminek meg az értelmes megoldása

&tex;\displaystyle a=\frac{\sqrt{\left(c^2+1\right) u^2+v^2}}{\sqrt{u^2+v^2}}\qquad a=1&xet;

Ez meg szerkeszthető, ebből &tex;\displaystyle y=\frac{c^2 v^2-u^2-v^2}{c^2 v}&xet; megvanmá, megoldható, és megvan &tex;\displaystyle x=(u^2 + c^2 u^2 + v^2)/(c^2 u)&xet; is. Nem egy szépségdíjas számolás, ilyenkor jó a számítógép.

Előzmény: [1868] Bátki Zsolt, 2014-09-23 18:19:23
[1869] marcius82014-09-24 12:18:21

Egy ötlet: Legyenek az "e" ellipszis fókuszpontjai F1(+c;0), F2(-c;0), legyen az ellipszis félnagytengelye "a", legyen az ellipszis félkistengelye "b", ekkor az ellipszis egyenlete ismert. Legyen a "k" kör középpontja K(u;v) és sugara "r", ekkor a "k" kör egyenlete is ismert. Ami ismert: az "F1", "F2", "u", "v", "r". Az "a" értékét úgy kell meghatározni, hogy az ellipszis egyenletéből és a kör egyenletéből álló egyenletrendszernek pontosan egy (x,y) megoldáspárja legyen. Ekkor ezzel az "a" értékkel kiszámolva az (x,y) megoldáspárt, a kapott képlet alapján a metszéspont szerkeszthető.

Mi van, ha az "e" ellipszis úgy érinti a "k" kört, hogy a kör az ellipszis belsejében van.

Ez a probléma felkeltette az érdeklődésemet, még fogok vele foglalkozni. bertalan Zoltán.

Előzmény: [1859] Bagesz, 2014-09-15 04:52:30
[1868] Bátki Zsolt2014-09-23 18:19:23

Az a sejtésem, hogy általánosságban euklidészi módon nem szerkeszthető. Ehhez találni kellene, egy elrendezést, amit algebrailag megoldva olyan szakasz jön ki, ami bizonyítottan nem szerkeszthető. pl köbgyök. A geogebra megenged pl szögharmadolást is ami eukledészi módon bizonyítottan nem megy. Az inverzió jó ötletnek tűnik. A feladat szépsége, hogy annyira egyszerű a felvetés, hogy érthetetlen evvel nem foglalkozott Senki, vagy mi nem tudunk róla ?

[1867] Hajba Károly2014-09-19 20:31:37

Erre azóta én is rájöttem. De ettől függetlenül a megoldást nagy valószínűséggel az inverzión keresztül lehet megtalálni.

Egy CAD-es programmal én is próbálok jó szerkesztést találni. A két pont és a tükörpont egy kört ad és az AB szakasz szakaszfelező merőlegese ill. a tükrözési tengely egy negyedik pontként ugyanezen körön metszik egymást. Pl az A és B pontot összekötő egyenes ill. az AB szakasz szakaszfelező merőleges inverziókörei alapján ezen kör inverziókörének két pontja már adott. Csak egy harmadik ismert pontra nem lelek rá.

Előzmény: [1866] Bagesz, 2014-09-18 21:31:54
[1866] Bagesz2014-09-18 21:31:54

Szia! Jó ötletnek tűnt ezért utána jártam a szerkesztésének. GeoGebrával el is készítettem, de sajnos nem a kívánt pontban metszette a kört. További ötleteket szívesen várok. Üdv, Bagesz

Előzmény: [1864] Hajba Károly, 2014-09-16 17:17:55
[1865] Bagesz2014-09-16 22:26:02

A bizonyítás egyszerű, "A" és "B" pont közé kifeszítünk egy kötelet, ami kicsit hosszabb mint az "A" és "B" pont közötti távolság, Majd húzunk egy görbét úgy hogy feszes legyen a kötél mindvégig. Ez egy elipszis lesz. Majd egyre nagyobb kötelet veszünk, egyszer csak érinteni fogjuk a kört. Ez a pont a megoldás. Ezen a ponton az elipszis érintője és a két fókuszpontja által bezárt szög megegyezik, mint ahogy bármelyik pontja az elipszisnek és a két fókuszpontjával összekötő egyenes által bezárt szög.

Előzmény: [1860] Bátki Zsolt, 2014-09-15 22:28:23
[1864] Hajba Károly2014-09-16 17:17:55

Nem vagyok jártas a témában, de talán inverzióval (körre történő tükrözéssel) lehet a megoldást megtalálni.

Ki kellene próbálni, hogy az egyik pontot invertáljuk a körre és összekötjük a másikkal. Lehet, a metszéspont adja a megfelelő pontot a köríven.

Előzmény: [1859] Bagesz, 2014-09-15 04:52:30
[1863] Bátki Zsolt2014-09-16 13:57:23

Bocsánat. Jó ötletnek tűnt. Jó, hogynem kezdtem el bizonyítani. A majdnem jó megoldás visz el igazán a lényegtől.

[1862] Sinobi2014-09-16 10:27:05

tenyleg ellenorizheto geogebraval:

Előzmény: [1860] Bátki Zsolt, 2014-09-15 22:28:23
[1861] Bátki Zsolt2014-09-15 22:32:53

Persze a C nem az O a kör középpontja. Elírtam, de remélem értitek.

[1860] Bátki Zsolt2014-09-15 22:28:23

Ha a két pont egyenese közrefogja a kört, akkor annak egyenese kimetszi a megoldást a körből.(háromszög egyenlőtlenség) AB>=AP+PB Ha AB szakasz kívül van a körön, akkor rajzoljunk egy szabályos háromszöget a körhöz képest kifelé. Ennek csúcspontja C. C és a kör középpontja O által meghatározott egyenes és a kör metszéspontja a nyerő. P pont. Nem tudom bizonyítani, de Geogebrával ellenőrizhető. Valószínűleg köze van ahhoz, hogy egy 120 fokosnál kisebb háromszög esetén AP+BP+CP összeg akkor a legkisebb, ha P minden oldalról 120 fokos szögben látszik. (Nem tudom kinek a tétele)

Így a szerkesztés nagyon egyszerű. Köszönöm a feladatot. megj, Fizika: a fény a legrövidebb utat keresi. Tehát ha tükörből van a kör (henger) akkor A-ból a B pontot P pontban látjuk. (Beesési és kimenő szög egyenlő) Aki akarja bizonyítsa, hogy tényleg ez a minimális. Érdekel a megoldás.

[1859] Bagesz2014-09-15 04:52:30

Sziasztok! Két pont között a legrövidebb utat kellene kiszámolnom, úgy hogy egy kört kell érinteni. Ismert a 2 pont és a kör koordinátái, valamint a kör sugara. Azt tudom, hogy a kör azon pontja a keresett pont, ahol a kör érintője és a pontok által bezárt szög megegyezik. Ezt viszont hogy lehet kiszámolni vagy kiszerkeszteni? Előre is köszi a segítséget. Üdv

[1858] w2014-08-12 12:31:07

Oké, igen, triviális. Meddig jutottál egyébként a feladattal?

Előzmény: [1857] Sinobi, 2014-08-10 20:25:29
[1857] Sinobi2014-08-10 20:25:29

ennek kupszeletes altalanositasarol tudsz valamit? igaz-e, hogy 4-5 kupszelethez mindig letezik olyan kupszelet, amely mindegyiket erinti?

-

@w: "Legyen ABC háromszög BC oldalához írt köre h, amely a BC oldalt D-ben érinti. Tekintsük azt a k kört, amely áthalad a B és C pontokon, és érinti h-t (de nem a BC egyenes). Mutassuk meg, hogy h és k érintési pontját P-vel jelölve, PD egyenes felezi a BPC szöget."

Vesszuk BC Apolloniusz-korei kozul azt, amelyik meroleges h-ra. Athalad P-n es D-n, mert invertalva ra P es D fixen kell maradjanak.

Előzmény: [1856] Fálesz Mihály, 2014-08-08 16:56:22
[1856] Fálesz Mihály2014-08-08 16:56:22

Ez az Apollóniusz féle szerkesztési feladat speciális esete: adott három kör, pont vagy egyenes, szerkesszünk olyan kört, ami mindhármat érinti (pont esetén átmegy rajta).

Egy tipikus megoldás, hogy a körök sugarait ugyanannyival megváltoztatjuk úgy, hogy az egyik kör ponttá fajuljon. (Az egyenest eltoljuk). Ezután jöhet egy inverzió, ami visszavezeti a feladatot két kör közös érintőinek megszerkesztésére.

Előzmény: [1855] djuice, 2014-08-08 15:07:32
[1855] djuice2014-08-08 15:07:32

Sziasztok!

Az alábbi geometriai szerkesztési példán gondolkodom már napok óta, de nem jutok eredményre. Tudnátok segíteni?

Adottak "r1" és "r2" tetszőleges sugarú és helyzetű körök a síkon, valamint egy őket nem érintő és nem metsző "f" egyenes, melynek ismerjük a körök középpontjától mért paraméteres (n1-; n2-szeres) távolságát. Szerkesszük meg azt a közbeeső kört, mely érinti mindkét kört és az egyenest! Számítani is próbálom a pontokat, de a szerkesztés volna a lényeg.

Mellékelem az ábrát is:

[1854] w2014-07-18 13:38:09

Ez nagyon szép, köszi! :)

Előzmény: [1853] csábos, 2014-07-18 09:22:53

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]    [39. oldal]    [40. oldal]    [41. oldal]    [42. oldal]    [43. oldal]    [44. oldal]    [45. oldal]    [46. oldal]    [47. oldal]    [48. oldal]    [49. oldal]    [50. oldal]    [51. oldal]    [52. oldal]    [53. oldal]    [54. oldal]    [55. oldal]    [56. oldal]    [57. oldal]    [58. oldal]    [59. oldal]    [60. oldal]    [61. oldal]    [62. oldal]    [63. oldal]    [64. oldal]    [65. oldal]    [66. oldal]    [67. oldal]    [68. oldal]    [69. oldal]    [70. oldal]    [71. oldal]    [72. oldal]    [73. oldal]    [74. oldal]    [75. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Google   Szerencsejáték Zrt.   Emberi Erőforrások Minisztériuma   Emberi Erőforrás Támogatáskezelő   Oktatáskutató és Fejlesztő Intézet   ELTE   Nemzeti Tehetség Program   Nemzeti
Kulturális Alap