Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]  

Szeretnél hozzászólni? Jelentkezz be.
[2057] Yegreg2007-05-04 16:24:05

Igazoljuk, hogy ha x1,x2,...,xn pozitív számok, akkor \root{n}\of{(1+x_1)(1+x_2)...(1+x_n)}\geq 1+\root{n}\of{x_1x_2...x_n} !

[2058] lorantfy2007-05-04 21:20:01

Inkább léghajó, mert nem biztos, hogy a tenger mélysége elegendő.

Előzmény: [2055] Matthew, 2007-05-04 13:50:58
[2059] jonas2007-05-04 22:53:31

Jó kérdés.

Azt ugye tudjuk, hogy log j=j\pi/4, így azt mondhatnánk, hogy ij=exp(ilog j)=exp(ij\pi/4)=exp(k\pi/4)=k. Viszont ugyanígy mondhatnánk, hogy ij=exp(log j.i)=-k. Nem tudom, melyik a helyes, és egyáltalán azt sem, hogy értelmezve van-e a hatvány.

Az előző e alapú hatvány azért volt értelmezve, mert egy valós együtthatós hatványsorba bármilyen kvaternió elemet (vagy mátrixot) be tudunk helyettesíteni, hiszen egy elem hatványai felcserélhetőek egymással és a komplex számokkal is. Ezzel szemben az ix már nem valós, hanem komplex együtthatós hatványsor, amibe pedig nem helyettesíthetünk be akármilyen kvaterniót. Ha j-t az előzőhez hasonlóan egy 4x4-es valós mátrixként fogjuk fel, és behelyettesítjük a komplex hatványsorba, akkor egy nem valós komplex mátrixot kapunk, amit nem foghatunk fel kvaternióként.

Előzmény: [2050] Lóczi Lajos, 2007-05-03 22:15:57
[2060] Lóczi Lajos2007-05-05 01:03:05

Pár kérdés, amit nem értek:

1. Miért lenne log j=j\pi/4 ? Szerintem nem az.

2. Valósban sem a kitevő, hanem az alap logaritmusát vesszük egy hatvány definíciójakor, tehát nem jó formulából indulsz ki.

3. exp(k\pi/4) értéke nem k.

Előzmény: [2059] jonas, 2007-05-04 22:53:31
[2061] Lóczi Lajos2007-05-05 01:07:51

Definiáljuk kétféleképp, és mindkét értelemben számoljuk ki, úgy, mint ij=elog (i).j, illetve, mint ij=ej.log (i), ahol log (i) (végtelen sok) értékei azon q kvaterniók, melyekre eq=i.

Előzmény: [2060] Lóczi Lajos, 2007-05-05 01:03:05
[2062] Cckek2007-05-06 18:15:46

Írhatjuk: 1=\frac{\sum_{i=1}^n(\sin^2y_i+\cos^2y_i)}{n}=\frac{\sum_{i=1}^n\sin^2y_i}{n}+\frac{\sum_{i=1}^n\cos^2y_i}{n}\ge \root{n}\of{\prod_{i=1}^n\sin^2y_i}+\root{n}\of{\prod_{i=1}^n\cos^2y_i},

tehát

\frac{1}{\root{n}\of{\prod_{i=1}^n\cos^2y_i}}\ge 1+\frac{\root{n}\of{\prod_{i=1}^n\sin^2y_i}}{\root{n}\of{\prod_{i=1}^n\cos^2y_i}},

az-az

\root{n}\of{\prod_{i=1}^n(1+\tg^2y_i)}\ge 1+\root{n}\of{\prod_{i=1}^n\tg^2y_i}.

Ha \tg^2y_i=x_i, i=\overline{1,n} kapjuk a kivánt egyenlőtlenséget.

Előzmény: [2057] Yegreg, 2007-05-04 16:24:05
[2063] Cckek2007-05-06 18:29:46

324.feladat Határozzuk meg azon n-edrendű permutációk számát melyekre |p(i)-i|\lei

[2064] Gubbubu2007-05-08 15:46:12

A negyedik egyértelműen egy halászbárka, amelyet egy 200 méter magas hullám épp a csúcsára vett. A másik három vízijármű egy 200 méter oldalhosszúságú egyenlőszárú háromszög három csúcsát alkotja, melyek mindegyike 200 méter távolságra van a halászbárkától.

A "tengeralattjáró" kifogásolható megoldás, mivel nem a szó szoros értelmében a "tengeren" halad, hanem a tenger>ben< (kivéve persze, ha épp felszíni üzemmódban halad. De akkor meg nem a szó szoros értelmében vett tengeralattjáró, hanem tengeralattjáró, amelyet halászbárkának használnak).

Ez az egzakt megoldás.

Előzmény: [2051] Fálesz Mihály, 2007-05-04 10:47:19
[2065] Gubbubu2007-05-08 15:47:25

Ugyanezen okok miatt a "léghajó" még kevésbé egzakt megoldás, hiszen ha a léghajó a tengeren halad, akkor ott valószínűleg valami baj történt :-)).

Előzmény: [2064] Gubbubu, 2007-05-08 15:46:12
[2066] Sirpi2007-05-08 16:23:26

Ha már kötözködés, akkor a halászbárka nem 200m-es, hanem \sqrt {\frac 23} \cdot 200 méteres hullám tetején kell, hogy legyen ;-)

Előzmény: [2064] Gubbubu, 2007-05-08 15:46:12

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]