Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2601] Róbert Gida2008-03-16 14:04:28

Triviális. Legyen m=1236789689135*n-206131614856 alakú prím, ismeretes, hogy ezekből végtelen sok van Dirichlet tétele miatt (feltétele teljesül), ilyen prímekre \sigma(6*m)<\sigma(6*m+1) lesz, hiszen az elsőt pontosan ki tudod számolni, mert m az prím, a másodikat pedig becsüld alulról, használva azt, hogy ekkor 6*m+1 osztható minden prímmel 5-től 37-ig, így *találtam ki*. Például n=25-re prímet ad, azaz m=30713610613519 megoldás lesz, ezt közvetlenül is ellenőrizheted, ez persze nem biztos, hogy a legkisebb megoldás, hiszen egy más konstrukció is adhat jó m-et.

Előzmény: [2599] Gyöngyő, 2008-03-16 13:00:58
[2600] S.Ákos2008-03-16 13:58:06

Megnézve az [1;1020] intervallumot, eddig nem találtam megoldást, és úgy néz ki, hogy a függvényértékek közötti eltérés nő, egyre nagyobb lesz \frac{\sigma(6m)}{\sigma(6m+1)}. Többet sajnos még nem tudok mondani.

Előzmény: [2599] Gyöngyő, 2008-03-16 13:00:58
[2599] Gyöngyő2008-03-16 13:00:58

Sziasztok!

Tudnátok segíteni a következő feladatban:

Keressük a legkisebb pozitiv egész m-et amelyre \sigma(6m)<\sigma(6m+1)fenntáll.

A másik kérdés pedig,az h mutassuk meg,hogy a fennti egyenlőtlenségnek végtelen sok megoldása van.

Ahol \sigma(m) az osztók összegét jelenti.

Köszönettel

[2598] szbela2008-03-15 15:13:01

Sziasztok!

Esetleg megnézzük (i) x=0, (ii) x=0 és y=0 esetekre? Bár nem tudom, hogy ez így jó-e.

(i) x=0 : f(x+f(y))=f(0+f(y))=f(f(0))+f(y)

(ii) x=0 és y=0 : f(x+f(y))=f(0+f(0))=f(f(0))=f(f(0))+f(0)

(i)-nek és (ii)-nek teljesülnie kell: (ii)-ből következett, hogy f(f(0))=f(f(0))+f(0), ebből f(0)=0 tehát f(f(0))=0 szintén. Ezt (i)-be helyettesítjük és kapjuk, hogy f(f(y))=f(y) Ennek persze minden y-ra teljesülnie kell. És mivel f: R->R -be képez, ezért ha f(y)=a, akkor f(a)=a f(y)=f(f(y)) miatt. f tehát az identitásfüggvény lenne.

Előzmény: [2595] Gyöngyő, 2008-03-14 20:29:51
[2597] Cckek2008-03-15 09:56:31

Egy ötlet: f(f(x+f(y)))=f(f2(x)+f(y))=f(f(y)+f2(x))=f(f(f(y)))+f2(x)=f2(f(y))+f2(x). Legyen f(y)=t\inImf

Ekkor f2(x+t)=f2(x)+f2(t), tehát az f2 függvény kielégíti Cauchy funkcionálegyenletét az RxImf halmazon.

Előzmény: [2595] Gyöngyő, 2008-03-14 20:29:51
[2596] cauchy2008-03-14 22:45:35

Véletlenül f(x) = x jó. :-) Sajnos nem tudok többet hozzátenni.

Előzmény: [2595] Gyöngyő, 2008-03-14 20:29:51
[2595] Gyöngyő2008-03-14 20:29:51

Sziasztok!

Nekem is van egy érdekes feladatom:

Keressük meg az összes R-ből R-be képző nemcsökkenő függvényt amelyre f(x+f(y))=f(f(x))+f(y) fennáll minden valós x és y-ra

[2594] kicsipega2008-03-10 09:44:52

sziasztok!

Még új vagyok negyon tetszik ez a fórum, bár még nem olvastam égig az összes feladatot és megoldást. A 44. feladatnak van egy kicsit nehezítet változa. A fekete és fehér marhák egy négyzetbe, a tarka és barna marhák egy háromszögbe tudnak felsorakozni.

Ha már volt bocsi az ismétlésért.

Gabi

[2593] nadorp2008-03-09 21:38:30

Pontosan. Ezek után már csak össze kell adni a két egyenlő integrált.

Előzmény: [2592] epsilon, 2008-03-09 21:16:09
[2592] epsilon2008-03-09 21:16:09

Ha elvégzed az 1/x=y változócserét, akkor visszakapod a [2589] Cckek integrálját aminek az eredménye éppen [2590] Lóczi Lajos-tól. Nem de?

[2591] nadorp2008-03-09 20:53:34

Egy ötlet: mennyi \int_0^\infty\frac{arctg\frac1x}{x^2+x+1}dx

Előzmény: [2589] Cckek, 2008-03-08 15:47:16
[2590] Lóczi Lajos2008-03-08 16:18:24

Íme a végeredmény \frac{\pi^2}{6\sqrt{3}}, hátha segít a bizonyítás kitalálásában :)

Előzmény: [2589] Cckek, 2008-03-08 15:47:16
[2589] Cckek2008-03-08 15:47:16

Igen, jól melléfogtam:D. Akkor itt van egy érdekes feladat:

\int_0^\infty \frac{arctg x}{x^2+x+1} dx=?

Előzmény: [2582] Lóczi Lajos, 2008-01-26 00:31:14
[2588] Róbert Gida2008-01-28 00:29:29

Aszimptotikusan c*\frac {\sqrt n}{log n}, ahol c>0 konstans, ez is megsejtehő, mint például az ikerprím konstans.

Freud Gyarmati régi ELTE számelmélet jegyzetét megnéztem, ott sincs kimondva a sejtés, csak az irreducibilitás és a primitívség, de ez nem elég! n2+n+2 polinom például irred. és primitív, de csak a 2-t veszi fel prímként (minden egész helyen a polinom értéke páros). Szerintem már csak annyit kell feltenni, hogy, ha a polniom foka d, akkor minden p\led-re a polinom Fp[x]-ben nem az azonosan nulla polinom. (p>d-re, ha a polinom primitív, akkor a fokszámtétel miatt nem lehet nulla a polinom). Ez persze a te n2+n+1 polinomodat nem érinti, ez is teljesül rá.

Előzmény: [2587] V Laci, 2008-01-27 22:28:12
[2587] V Laci2008-01-27 22:28:12

Igen, az ilyen prímek számának véges vagy végtelen voltára gondoltam. Mit értesz az alatt, hogy N-ig az ilyen p prímek száma megsejthető? Mi a sejtésed?

Előzmény: [2586] Róbert Gida, 2008-01-27 19:53:47
[2586] Róbert Gida2008-01-27 19:53:47

Tehát, hogy végtelen sok van-e, az a kérdés? p=2 nem megoldás, egyébként feltehető, hogy p páratlan prím, így a négyzetszám is páratlan, legyen ez (2*n+1)2, ekkor rendezve az kell, hogy p=n2+n+1 alakú prímből végtelen sok legyen, mivel ez irreducibilis és primitív polinom, ezért egy idevonatkozó mély sejtés szerint végtelen sok ilyen prím van (elsőfokúra Dirichlet tétel, nagyobbra nem tudjuk, hogy igaz-e). Sőt ha a számukat kérdezed adott N-ig, hogy hány ilyen p prím van az is megsejthető.

Előzmény: [2585] V Laci, 2008-01-27 19:22:26
[2585] V Laci2008-01-27 19:22:26

Sziasztok!

Nemrég találkoztam az alábbi érdekes problémával (bár lehet, hogy nehezebb, mint érdekesebb).

Hány olyan p prím van, amelyre 4p-3 négyzetszám?

[2584] komalboy2008-01-26 14:01:19

ok... most már lesett... :P

[2583] komalboy2008-01-26 13:36:58

h lehet azt igazolni, h a két rekurzió ugyanaz?

[2582] Lóczi Lajos2008-01-26 00:31:14

Hát igen, tényleg nem vettük észre a kritikus hibát. (Pedig milyen elegáns érvelés lett volna az enyémhez képest...)

Persze ettől az állítás még igaz :)

Előzmény: [2581] Róbert Gida, 2008-01-25 01:31:56
[2581] Róbert Gida2008-01-25 01:31:56

Túl szép. Azt azért megkérdezhetem, hogy egyenlőtlenségeket is lehet már egymással osztani?! A bizonyítás rossz. (pozitív A,B,C,D-re):

A\geB

C\geD-ből nem következik, hogy: \frac AC\ge \frac BD

Előzmény: [2576] Lóczi Lajos, 2008-01-24 22:17:08
[2580] Róbert Gida2008-01-25 01:20:17

Ez pont az A001353 sorozat Neil Sloane adatbázisában. Szerepel is benne a megjegyzések között ez a rekurzió is rá. Pell egyenlethez van a legközelebb.

Előzmény: [2579] Lóczi Lajos, 2008-01-24 23:40:07
[2579] Lóczi Lajos2008-01-24 23:40:07

Kombinatorikus leszámlálásból vagy diofantoszi egyenletből jött ki ez a rekurzió?

Előzmény: [2575] komalboy, 2008-01-24 18:19:19
[2578] Lóczi Lajos2008-01-24 23:31:24

Ugyanez másképp elmondva:

a megadott an sorozat egy másik rekurziót is teljesít, mégpedig az An=4An-1-An-2, A0=0, A1=1 rekurziót, melynek elemei nyilván egészek.

Előzmény: [2577] Lóczi Lajos, 2008-01-24 23:16:21
[2577] Lóczi Lajos2008-01-24 23:16:21

Vegyük észre (és indukcióval lássuk be), hogy az an sorozat expliciten

a_n=\frac{-{\left( 2 - {\sqrt{3}} \right) }^n + {\left( 2 + {\sqrt{3}} \right) }^n}
  {2{\sqrt{3}}}

alakban írható. Innen a binomiális tétel fejezi be a bizonyítást.

Előzmény: [2575] komalboy, 2008-01-24 18:19:19

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]