Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2954] Gyöngyő2009-06-04 23:29:11

Sziasztok! Itt egy érdekes feladat:

Legyen \zeta a Riemann-féle Zeta-függvényt.

Bizonyítsd be, hogy minden n\geq2-re

\zeta(2)\zeta(2n-2)+\zeta(4)\zeta(2n-4)+...+\zeta(2n-2)\zeta(2)=\bigg(n+\frac{1}{2}\bigg)\zeta(2n)

[2953] HoA2009-05-21 14:44:56

Köszönöm, a Gimp-pel sikerült. Egyben egy kis fordítási gyakorlat is, mert hozzám magyarul beszélt :-)

Előzmény: [2952] lgdt, 2009-05-21 01:00:44
[2952] lgdt2009-05-21 01:00:44

(Vagy az imagemagick nevű programmal: convert kep.png -normalize ujkep.png)

Előzmény: [2950] jonas, 2009-05-18 19:00:39
[2951] Sirpi2009-05-18 23:28:38

Én is ezeket találtam. Mellesleg n×n méretnél n\geq2-re könnyű 2n-es példát mutatni, minden n-re 3n-3-at, n\geq4-re pedig 4n-8-at. Utóbbi kettő azonos, ha n=5, ez adja a két különböző megoldást. Azt sejtem, hogy n\geq5 esetén a 4n-8 nem javítható.

Amúgy én nem vacakoltam ennyit a képeiddel. Print screen, paint-be benyomtam, és befestettem fehérre a hátteret :-) Néhány betű közepe így sötét maradt ugyan, de teljesen olvasható.

Előzmény: [2948] jonas, 2009-05-18 18:29:34
[2950] jonas2009-05-18 19:00:39

Várj, ezt részletezem. Gimp-ben először megnyitod a képfájlt úgy, hogy letöltöd, majd a File menüből az Open parancsot választod, majd kiválasztod a letöltött képfájlt. Kiválasztod a Select by Color tool-t, és a Tool Options dialogban a Threshold csúszkát nullára állítod. Utána rákattintassz a képre valahol, ezzel kijelölted a képben az egyforma színű pixeleket. Ezután a színváltó melletti kis gombbal visszaállítod az aktuális előtérszínt feketére, a háttérszínt fehérre, majd a képen az Edit menüből lefuttatod a Fill with BG Color parancsot, ami fehérre színezi a kijelölést. Végül a Select menüből kiválasztod a None opciót, hogy a kijelölés határát mutató esetleges keret ne zavarjon.

Előzmény: [2949] jonas, 2009-05-18 18:36:33
[2949] jonas2009-05-18 18:36:33

Megnyitod egy képszerkesztőben, választassz egy szimpatikus pontot a képen, kijelölöd az összes olyan pontot, ami pontosan ugyanolyan színű, mint az a pont, és ezeket átszínezed fehérre.

Előzmény: [2947] HoA, 2009-05-18 18:26:57
[2948] jonas2009-05-18 18:29:34

Ha sor és oszlopcserére normáljuk a megoldásokat, akkor az is kiderül, hogy a 4-szer 4-es esetben lényegében csak egy megoldás van, 5-ször 5-ös esetben pedig csak kettő.

Előzmény: [2946] jonas, 2009-05-18 18:12:31
[2947] HoA2009-05-18 18:26:57

És könnyen láthatóvá hogy lehet átszínezni?

Előzmény: [2944] jonas, 2009-05-18 13:22:32
[2946] jonas2009-05-18 18:12:31

5×5-ösre a lenti kód változatlanul nem fut le, mert túl sok memóriát eszik, és ha azt kijavítjuk, akkor meg túl sok ideig fut. Lehetne gyorsabb programot írni, de egyszerűbb csak a memóriával takarékoskodni és azt észrevenni, hogy feltehetjük, hogy az első sor első három mezője üres (hiszen van egy olyan sor, amiben csak két mező teli, és a sorokat meg oszlopokat átrendezhetjük), akkor pedig már csak 222 lehetőséget kell megnézni, ennyi pedig néhány percen belül lefut, ha a kódot csak kicsit írjuk is át. (Valószínűleg még a teljes 225-es keresést is le lehet futtatni, de úgy tűnik, tovább tart, mint ami alatt ezt megírom és a screenshot-ot fölrakom.)

Előzmény: [2945] Sirpi, 2009-05-18 13:26:34
[2945] Sirpi2009-05-18 13:26:34

Tetszik a kód tömörsége (meg se próbáltam értelmezni :-) ), de nekem ez még ment kód nélkül is. Megnézed 5x5-re is esetleg?

Előzmény: [2944] jonas, 2009-05-18 13:22:32
[2944] jonas2009-05-18 13:22:32

Remek! Ezt számítógéppel nyers erővel pár perc alatt meg lehet oldani. Csatolom a számításról készüt screenshotot, ami az eredményt is megmutatja, de hogy még más is gondolkozhasson rajta, átszínezem nehezen láthatóvá.

Előzmény: [2943] Sirpi, 2009-05-18 12:05:59
[2943] Sirpi2009-05-18 12:05:59

Na, egy nem túl nehéz, nemrég találtam ki:

503. feladat: Legfeljebb hány mező jelölhető meg úgy egy 4x4-es sakktáblán, hogy minden megjelölt mezőnek vagy a sorában, vagy az oszlopában legfeljebb egy másik megjelölt mező lehet?

[2942] Lóczi Lajos2009-05-08 20:32:31

Jaa, megértettem :)

Előzmény: [2941] nadorp, 2009-05-08 19:47:22
[2941] nadorp2009-05-08 19:47:22

Az Arany Dániel és a megoldás metszete(!) nem üres :-)

Előzmény: [2940] R.R King, 2009-05-08 16:00:42
[2940] R.R King2009-05-08 16:00:42

Bizonyára sok okos 10. osztályos használná is a sin(x) Taylor sorfejtését:)

Előzmény: [2939] nadorp, 2009-05-08 11:57:32
[2939] nadorp2009-05-08 11:57:32

Ez feladható lenne Arany Dánielen :-)

Előzmény: [2938] Lóczi Lajos, 2009-05-07 19:28:23
[2938] Lóczi Lajos2009-05-07 19:28:23

Bizonyítsuk be, hogy az

1+\sqrt{\frac{8}{3}}\sin\left(\frac{1}{3}{\rm{arcsin\sqrt{\frac{27}{32}}}}\right)

szám egy nevezetes állandó. Írjuk fel egyszerűbb alakban.

[2937] jenei.attila2009-05-04 20:59:56

Először is szeretettel üdvözlünk. Mint láthatod, ebben a topikban érdekes (vagy érdekesnek ítélt) feladatokat adunk fel egymásnak, megbeszéljük a különböző megoldásokat, új feladatokat találunk ki, segítséget kérünk egymástól. A témák teljesen szerteágazóak: számelméleti, logikai, analízisbeli, algebrai, geometriai, stb. feladatok kerülnek elő. A feladatok megértéséhez általában nincs szükség középiskolás ismeretanyagon túlmenő matematikai ismeretekre. De javaslom hogy legalább néhány lap erejéig olvasd vissza a fórumot, sokkal részletesebb (és érdekesebb) áttekintést kapsz úgy arról, hogy voltaképpen mivel is foglalkozunk itt. Itt van pl. rögtön az 500. feladat, ami nem túl nehéz, de igen szép. Reméljük kedvet kapsz a fórumban való további aktív részvételre. Hát egyelőre ennyit.

Előzmény: [2936] Orsós Ferenc, 2009-05-04 12:02:54
[2936] Orsós Ferenc2009-05-04 12:02:54

hellosztok Amint látjátok új gyerek vagyok, ezért arra szeretnélek megkérni titeket, ha lehet akkor avassatok be, hogy éppen miovel is foglalkoztok. előre is köszi.:)

[2935] Csimby2009-04-30 20:45:51

lassú vagy :P

Előzmény: [2934] Tibixe, 2009-04-30 20:38:38
[2934] Tibixe2009-04-30 20:38:38

Egyetemi ZH feladatsor: LINK

4. feladatot nézzétek :)

[2933] jenei.attila2009-04-22 20:22:38

Valóban, nem írtam le, csak "gondoltam". Számomra annyira nyilvánvalónak látszott, hogy fölöslegesnek tartottam leírni. De így pontos. Ez egyébként egy szép feladat volt. A te megoldásodból az is kijön, hogy minden pénztárosnak ugyanannyi kulcsot kell birtokolni, én pedig egyszerűen kihasználtam a feladat feltételét. Kíváncsi lennék, honnan származik ez a feladat.

Előzmény: [2932] HoA, 2009-04-22 19:52:07
[2932] HoA2009-04-22 19:52:07

Köszönöm. Cserébe engedj meg egy kis korrekciót érvelésedhez. Első érvednél a "minden zárhoz legalább 2 kulcs" egy elégséges, nem pedig szükséges feltétel. Valóban igaz, hogy ha minden zárhoz legalább 2 kulcsot osztunk ki, akkor bármely 3 pénztárost kiválasztva, legalább az egyiknél lesz az adott zárhoz kulcs. De ebből még nem következik állításod, nevezetesen az, hogy ha bármely 3 pénztáros ki tudja nyitni a széfet, akkor minden zárhoz legalább 2 kulcsot kell kiosztani. ( A legalább két kulcs/zár szükségessége szerintem legegyszerűbben úgy látható be, hogy ha lenne olyan zár, amelyiknek csak egy kulcsa van, akkor az a pénztáros trió, amelyiknek e kulcs birtokosa nem tagja, nem tudná kinyitni a széfet.)

Előzmény: [2928] jenei.attila, 2009-04-22 13:13:29
[2931] jenei.attila2009-04-22 14:57:39

Bocs, \sqrt{13} és \sqrt{7} lánctört kifejtésére gondoltam.

Előzmény: [2930] jenei.attila, 2009-04-22 14:56:14
[2930] jenei.attila2009-04-22 14:56:14

Persze, hogy kijön. De erre a rekurzióra is valahogy rá kell jönni. A közelítésből is hasonló rekurzió adódik, nem biztos, hogy pont ez (nem számoltam ki), de az kiadja az összes megoldást. Egyébként a 13, illetve 17 lánctört kifejtéséből is kijön.

Előzmény: [2929] m2mm, 2009-04-22 14:48:23

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]