Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[962] 25012005-06-14 11:12:21

Nem csak az N, Z, Q, R, stb. számhalmazok, hanem ezek részhalmazai is (pl. a páros számok halmaza).

Ezt felhasználva egy lehetséges megoldás:

a 3-mal osztva

A: 0 vagy 1

B: 1 vagy 2

C: 2 vagy 0

maradékot adó számok halmazai.

Előzmény: [961] Kérdező, 2005-06-14 10:19:25
[961] Kérdező2005-06-14 10:19:25

A példám egyszerű, de mégsem ugrik be a megoldás. Kérlek segítsetek!

----Halmazelmélet----

Adott 3 számhalmaz, melyekben külön-külön végtelen sok elem van. Egy-egy halmaz metszetében szintén végtelen sok elem található. Viszont a közös metszetben nulla, az ugyanis üres!

Hogy lehetséges ez? Tudomásom szerint ugyanis a számhalmazok egymás elemei...

R > Q > Z > N

Tehát két ilyen számhalmaz metszetét mindig a kisebbik halmaz elemei jelentik. Nem értem, hogy a közös metszet hogy lehet üres!?

Előre is köszi a segítséget!

[960] jonas2005-06-13 21:51:02

A g(x)=x+1 is jó ellenpélda mindhárom esetre. A g(x)=1-et én is kipróbáltam, de úgy látszik, nem vettem észre, hogy az is mindig jó. Szerintem ez bizonyítja, hogy én nem számoltam túl sokat, hiszen csak beírtam az első olyan ellenpéldát, ami kijött.

Előzmény: [959] Lóczi Lajos, 2005-06-13 14:45:33
[959] Lóczi Lajos2005-06-13 14:45:33

Hogy hogy tudtok ilyen bonyolult ellenpéldákat kifundálni :-), g(x)=x+1, egy csomót kell számolni, hogy leellenőrizze az ember.

(Ami nekem -- igaz, sajnos nem öt perc után -- beugrott, mint ellenpélda, az a szimpla g(x):=c választás: ez alkalmas c-vel mindegyiket cáfolja. Szinte érzem, hogy sugallják a feladat kitűzői, hogy próbáljuk meg a cx alakú függvényeket, mint "jobb szélső" esetet, 0 és 1 közötti c-vel, ezekre azonban mindhárom eset teljesül...)

Előzmény: [958] jonas, 2005-06-12 18:54:39
[958] jonas2005-06-12 18:54:39

Nem baj, ha lelövöm a megoldást?

Ha g(x)=1, akkor 0=\leg'(x) így a feltétel teljesül, de  \int_0^x g^3(t)dt = x > x^2 = \left( \int_0^x g(t)dt \right)^2 ha 0<x<1, tehát (a) vagy (c) biztosan nem mindig igaz.

Másrészt a (b) sem feltétlenül igaz, szerintem g(x)=x+1 ellenpélda rá.

Előzmény: [957] Lóczi Lajos, 2005-06-12 14:09:43
[957] Lóczi Lajos2005-06-12 14:09:43

177. feladat. Nemrég valahol tesztkérdésként (!) tűztek ki egy, az alábbihoz hasonló feladatot (tehát úgy gondolom, nem volt túl sok idő a megoldására).

Válasszuk meg a g:(0,\infty)\rightarrowR deriválható függvényt tetszőlegesen úgy, hogy 0\leg'(x)\le1 teljesüljön minden x>0 esetén. Döntsük el, melyik állítás igaz mindig.

a.) Minden x\in(0,1)

b.) Minden x\ge1

c.) Minden x>0

esetén fennáll, hogy

\int _{0}^{x}{g^{3}(t)}dt\leq 
  \bigg({\int _{0}^{x}g(t)dt}\bigg)^{2}.

[956] Lóczi Lajos2005-06-12 13:45:31

Szép megoldás. Beírom, hogy a feladatra milyen "megoldást" láttam, tanulságos a kettőt összehasonlítani. (Idézőjelbe tettem azokat a részeket, ami miatt a két megoldás látszólagosan elétér.)

Alkalmazzuk a jobb oldalon a tangensfüggvény ismert "azonosságát",

és a rövidség kedvéért pl. legyen y:=tg(x), valamint a:=tg(1) ekkor azt kapjuk, hogy

-\frac{2}{a}=\frac{a-y}{1+a y}+\frac{a+y}{1-a y}.

Ez utóbbi egyenletnek azonban y-ban nincs megoldása, "tehát" a kiindulási egyenletnek sincs.

Előzmény: [955] levi, 2005-06-10 20:15:33
[955] levi2005-06-10 20:15:33

-2ctg1=tg(1-x)+tg(1+x)

-2\frac{cos1}{sin1}=\frac{sin(1-x+1+x)}{cos(1-x)cos(1+x)}=\frac{sin2}{cos(1-x)cos(1+x)}

-2\frac{cos1}{sin1}=\frac{2sin1cos1}{cos(1-x)cos(1+x)}

-cos(1-x)cos(1+x)=sin21

-(cos1cosx+sin1sinx)(cos1cosx-sin1sinx)=sin21

sin21sin2x-cos21cos2x=sin21

sin21sin2x-(1-sin21)(1-sin2x)=sin21

sin21sin2x-(1-sin2x-sin21+sin21sin2x)=sin21

-1+sin2x=0

sin2x=1

x= \frac {\pi} 2 +k\pi

+ellenörzés (remélem nem baj hogy azt nem írom ide)...

Előzmény: [954] Lóczi Lajos, 2005-06-09 14:30:46
[954] Lóczi Lajos2005-06-09 14:30:46

176. feladat. Oldjuk meg a valós számok halmazán az alábbi egyenletet:

-2ctg1=tg(1-x)+tg(1+x)

[953] Lóczi Lajos2005-06-05 22:50:22

Meggyőztél (bár az x-ek és y-ok kissé összekeveredtek, pl. x3 nincs is definiálva, továbbá némely xi az y-tengelyen, más yj-k pedig az x-tengelyen vannak...)

Előzmény: [952] jonas, 2005-06-05 20:39:58
[952] jonas2005-06-05 20:39:58

Megpróbálom.

Tegyük fel, hogy az f folytonos függvény az egész R-en értelmezett, és minden értéket pontosan kétszer vesz fel.

Vegye fel az y0 számot az x0 és x1 pontokban, ahol x0<x1. Tekintsük az (x0,x1) intervallumot! Mivel itt f nem veszi fel x0-t, vagy csak y0-nál nagyobb, vagy csak y0-nál kisebb értéket vesz fel. Szimmetriaokokból tegyük fel, hogy csupa nagyobbat vesz fel. Ezen a középső intervallumon a függvénynek van maximuma, mégpedig az x2 pontban, ahol f(x2)=y2.

Legyen y3 a másik pont, ahol f(y3)=x2. A szimmetria miatt feltehetjük, hogy y2<y3

Két eset lehetséges.

Vagy x2<x3<x1, de ekkor az (y2,y3) intervallumban f értéke kisebb y2-nél, de nagyobb y0-nál. De az ilyen értékeket f a közbülsőérték-tétel miatt az (y0,y2) és az (y3,y1) intervallumon is mind felveszi, tehát legalább három helyen is, ami ellentmondás.

Ha viszont x1<x3, akkor f az (y0,y2), (y2,y1) és az (y1,y3) intervallumon is felveszi az összes (x2,x3)-beli értéket, ami lehetetlen.

Előzmény: [951] Lóczi Lajos, 2005-06-05 19:29:33
[951] Lóczi Lajos2005-06-05 19:29:33

Győzz meg minket :-)

Előzmény: [950] jonas, 2005-06-04 22:42:06
[950] jonas2005-06-04 22:42:06

Szerintem nincs ilyen függvény.

Előzmény: [946] Lóczi Lajos, 2005-06-03 16:48:28
[949] Lóczi Lajos2005-06-04 15:56:10

Igen, igazad van, a [946]-ban kétszer is tévedtem: persze "-" helyett ott "+"-t akartam írni, másrészt rosszul láttam, hogy "nem igaz" -- szerintem is jó a képlet, amit írtál.

Előzmény: [948] 2501, 2005-06-03 19:49:31
[948] 25012005-06-03 19:49:31

Megpróbálom indokolni, hogy

 f_n(x) \quad = \quad \left[\frac x n\right]+x-[x]

(ahol \left[x\right] az alsó egészrész) szerintem miért működik. Bontsuk fel két függvény összegére:

 f_n\left(x\right) \quad = \quad i(x)+r(x)

 i\left(x\right) \quad = \quad \left[\frac x n\right]

 r\left(x\right) \quad = \quad x-\left[x\right]

i\left(x\right) grafikonja egy n hosszúságú "fokokból" álló, növekedő "lépcső", melyben a "fokok" az egészeknél kezdődnek. r\left(x\right) tulajdonképpen x törtrésze (írhattam volna \left\{x\right\}-et is), tehát a grafikonja negyvenöt fokos, és 1 magas "sörtékből" áll. A kettő összegének grafikonján a "sörték" rákerülnek a "lépcsőfokokra", és minden fokon éppen n darab lesz.

Előzmény: [944] 2501, 2005-06-02 21:51:06
[947] 25012005-06-03 19:12:19

x-[x]-\left[\frac x 2 \right] nem tagja az általam definiált fn(x) függvénycsaládnak.

Előzmény: [945] Lóczi Lajos, 2005-06-03 16:45:44
[946] Lóczi Lajos2005-06-03 16:48:28

175. feladat. Adjunk meg olyan folytonos valós függvényt, amelynek értelmezési tartománya az egész számegyenes és minden értéket pontosan kétszer vesz fel.

[945] Lóczi Lajos2005-06-03 16:45:44

(A kérdőjeles egyenlőség nem igaz.)

Másrészt nem is működnek jól a képletek, pl. a bal oldali esetén (ha [.] jelöli az alsó egészrészt (=floor)), akkor pl. x-[x]-[\frac{x}{2}] a felet 3-szor veszi fel, de az egész értékeket csak kétszer.

Előzmény: [944] 2501, 2005-06-02 21:51:06
[944] 25012005-06-02 21:51:06

 f_n(x) \quad = \quad floor \left(\frac x n\right) + x - floor(x) \quad =^? \quad x - floor \left(x-\frac x n\right)

Aggodalomra semmi ok, mára befejeztem.

[943] 25012005-06-02 20:57:45

Megint nem jó, csak f2(x) jó. :o(

[942] 25012005-06-02 20:43:40

f_n(x) \qquad = \qquad x \quad - \quad floor \left(\frac {floor(x)} n \right)

Ahol floor(x) az a legnagyobb egész szám, amely nem nagyobb x-nél. Így biztosan jó.

[941] 25012005-06-02 19:38:23

Mégsem jó, pl. f2(x) három helyen 0. :o)

[940] 25012005-06-02 19:07:11

174.

fn(x)    =    x  -  [x]  mod n

Ez leírja az egész függvénycsaládot. Legalábbis most jónak tűnik. :o)

[939] Lóczi Lajos2005-06-01 13:40:51

174. feladat. Adjunk meg olyan valós függvényt (ha van), amelynek értelmezési tartománya is és értékkészlete is az egész R, és minden értéket pontosan

a.) kétszer

b.) háromszor

c.) négyszer

vesz fel.

[938] Lóczi Lajos2005-05-18 21:12:23

173. feladat. Adjuk meg az összes olyan pozitív x,y,z számot, melyekre teljesül, hogy

xy=yz=zx.

(A feladat más, mint a régebbi hasonló kinézetű társa.)

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]