KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Játékszabályok
Technikai információk
TeX tanfolyam
Regisztráció
Témák

 

apehman

Rendelje meg a KöMaL-t!

Reklám:

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - Érdekes matekfeladatok

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]    [39. oldal]    [40. oldal]    [41. oldal]    [42. oldal]    [43. oldal]    [44. oldal]    [45. oldal]    [46. oldal]    [47. oldal]    [48. oldal]    [49. oldal]    [50. oldal]    [51. oldal]    [52. oldal]    [53. oldal]    [54. oldal]    [55. oldal]    [56. oldal]    [57. oldal]    [58. oldal]    [59. oldal]    [60. oldal]    [61. oldal]    [62. oldal]    [63. oldal]    [64. oldal]    [65. oldal]    [66. oldal]    [67. oldal]    [68. oldal]    [69. oldal]    [70. oldal]    [71. oldal]    [72. oldal]    [73. oldal]    [74. oldal]    [75. oldal]    [76. oldal]    [77. oldal]    [78. oldal]    [79. oldal]    [80. oldal]    [81. oldal]    [82. oldal]    [83. oldal]    [84. oldal]    [85. oldal]    [86. oldal]    [87. oldal]    [88. oldal]    [89. oldal]    [90. oldal]    [91. oldal]    [92. oldal]    [93. oldal]    [94. oldal]    [95. oldal]    [96. oldal]    [97. oldal]    [98. oldal]    [99. oldal]    [100. oldal]    [101. oldal]    [102. oldal]    [103. oldal]    [104. oldal]    [105. oldal]    [106. oldal]    [107. oldal]    [108. oldal]    [109. oldal]    [110. oldal]    [111. oldal]    [112. oldal]    [113. oldal]    [114. oldal]    [115. oldal]    [116. oldal]    [117. oldal]    [118. oldal]    [119. oldal]    [120. oldal]    [121. oldal]    [122. oldal]    [123. oldal]    [124. oldal]    [125. oldal]    [126. oldal]    [127. oldal]    [128. oldal]    [129. oldal]    [130. oldal]    [131. oldal]    [132. oldal]    [133. oldal]    [134. oldal]    [135. oldal]    [136. oldal]    [137. oldal]    [138. oldal]    [139. oldal]    [140. oldal]    [141. oldal]    [142. oldal]    [143. oldal]    [144. oldal]    [145. oldal]    [146. oldal]    [147. oldal]    [148. oldal]    [149. oldal]    [150. oldal]    [151. oldal]    [152. oldal]    [153. oldal]    [154. oldal]    [155. oldal]    [156. oldal]    [157. oldal]    [158. oldal]    [159. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[3999] marcius82016-01-11 10:38:36

Igen, azóta már én is megértettem a kérdésed lényegét. Olyan hozzárendelést nem találtam, amelyből azonnal kiderül, hogy egy "3k+2" elemű halmaznak kétszer annyi "k+1" elemű részhalmaza van mint ahány "k" elemű.

Előzmény: [3998] klevente, 2016-01-08 15:40:05
[3998] klevente2016-01-08 15:40:05

Nem ilyenre gondoltam, hanem "ügyesre" abban az értelemben, hogy ha adott egy k elemű részhalmaz az elemeivel, akkor ahhoz azonnal meg lehet mondani a két hozzárendelt k+1 elemű részhalmazt az elemeikkel.

Előzmény: [3997] marcius8, 2016-01-04 10:58:37
[3997] marcius82016-01-04 10:58:37

Egy lehetséges célirányos megfeleltetés a részemről a következő:

Először lexikografikusan rendezem a "k" elemű részhalmazokat. Utána lexikografikusan rendezem a "k+1" elemű részhalmazokat.

a.) Ekkor a megfeleltetés legyen az hogy, a "k+1" elemű részhalmazok sorozatának elölről és hátulról számítva az "n"-ik tagjához hozzárendelem a "k" elemű részhalmazok sorozatának "n"-ik tagját.

b.) Ekkor a megfeleltetés legyen az hogy, a "k+1" elemű részhalmazok sorozatának elölről számítva az "2n-1"-ik tagjához és "2n"-ik tagjához hozzárendelem a "k" elemű részhalmazok sorozatának "n"-ik tagját.

Előzmény: [3992] klevente, 2015-12-02 09:18:51
[3996] jonas2015-12-23 21:42:38

Ha senki nem adhat önmagának vagy a házaspárjának ajándékot, akkor természetesen rosszabb a helyzet, mert több megkötés van. Ilyenkor 0.13 körül van az esélye, hogy sikerül a sorsolás.

Előzmény: [3995] marcius8, 2015-12-23 20:59:47
[3995] marcius82015-12-23 20:59:47

Ismert, hogy egy közösség tagjai karácsony előtt egymásközt sorsolással döntik el, hogy ki kinek ad ajándékot. A sorsolás úgy történik, hogy mindenki felírja a nevét egy cetlire, ezután mindenki a cetlit beleteszi egy kalapba, majd ezután mindenki húz egy cetlit ebből a kalapból "csukott szemmel". Így mindenki annak ad ajándékot, akinek a nevét húzta. A sorsolás akkor jó, ha mindenki másnak a nevét húzza. Ismert, hogy ekkor a jó sorsolás valószínűsége tart "1/e"-hez, ha a közösség tagjainak száma tart a végtelenhez.

Most tegyük fel, hogy egy közösség "k" darab házaspárból áll, és megint sorsolással döntik el, hogy ki kinek ad ajándékot. (Minden házaspár mindkét tagja külön-külön részt vesz a sorsolásban.) A sorsolás akkor jó, ha nincs olyan résztvevője a sorsolásnak, aki vagy a saját nevét húzza, vagy pedig a házaspárja nevét húzza. Mennyi a jó sorsolás valószínűsége, ha "k" tart a végtelenhez?

Most tegyük fel, hogy egy közösségnek "n" darab tagja van, és a közösség tagjai megint sorsolással döntik el, hogy ki kinek ad ajándékot. Mennyi annak a valószínűsége, hogy van két olyan tagja a közösségnek, akik egymást ajándékozzák meg? (Most ezutóbbit én is átéltem, ugyanis az iskolában is megtartottuk ezt a sorsolást, és én voltam a tagja annak az egyetlen párosnak, akik egymást ajándékozták meg.)

[3994] w2015-12-21 22:17:46

Legyen &tex;\displaystyle f:N\to N&xet; függvény, ahol &tex;\displaystyle N&xet; a pozitív egészek halmazát jelöli. Tegyük fel, hogy az &tex;\displaystyle f(1),f(2),\dots&xet; sorozatnak nincs közös prímosztója, és hogy elég nagy &tex;\displaystyle n&xet;-re &tex;\displaystyle f(n)\neq 1&xet;. Határozzuk meg &tex;\displaystyle f&xet;-et, ha azt is tudjuk, hogy elég nagy &tex;\displaystyle n&xet; esetén

&tex;\displaystyle f(a)^n | f(a+b)^{a^{n-1}}-f(b)^{a^{n-1}}&xet;(*)

teljesül minden &tex;\displaystyle a,b\in N&xet;-re!

[3993] HoA2015-12-03 22:10:19

Én nem kereskedem a tőzsdén. Így aztán fogalmam sincs róla, mit jelent a "10 pont stop", "kört nyerni" , "pozíció nyílik" stb. Ezért azt hiszem, a te feladatod megoldásához is segít egy másik feladat: Középiskolai matematikai ismereteket - és csak azt - feltételezve fogalmazd meg a problémádat közérthető nyelvre lefordítva.

Előzmény: [3991] shooter, 2015-11-23 17:28:18
[3992] klevente2015-12-02 09:18:51

Könnyű belátni, hogy egy 3k+2 elemű halmaznak kétszer annyi k+1 elemű részhalmaza van, mint k elemű (k természetes szám). Vajon megadható-e "ügyesen" valamilyen kölcsönösen egyértelmű hozzárendelés a k elemű részhalmazok és a k+1 elemű részhalmazokból alkalmasan képzett (diszjunkt) részhalmaz-párok között?

[3991] shooter2015-11-23 17:28:18

Sziasztok! Egy kis segítséget szeretnék kérni tőletek, mert nekem nehéznek és átláthatatlannak tűnik a dolog.

Egy példát szeretnék megoldatni, és nem szeretnék órákat gondolkozni rajt.

Tehát: Tőzsdén kereskedünk. 10 pont stopot használunk. Egymás után átlagosan 10 kört nyerünk. Egy körnek számít az is, ha 1 pozíció nyílik meg, és az is, ha mindhárom megnyílik.

Egy pozíció nyitáskor 1 pontot nyerhetünk. Ha megnyitjuk a második pozíciót (az első még nyitva van!), azon is 10 pontot veszthetünk. Harmadiknál is 10 pontot veszíthetünk.

Véletlenszerű, hogy megnyílik-e a második pozíció, de ha ez megnyílik, akkor többnyire a harmadik is, hacsak nem nyerjük meg a szükséges tőkét az első kettővel.

Mekkora legyen a pozíciók egymáshoz viszonyított méretaránya, hogy mégis nyerjünk? Mekkora legyen a második pozícióval vett nyereség, ha csak kettő nyílik meg, illetve mekkora legyen a minimális nyereség, ha mindhárom megnyílik? Nyerőben szeretnénk kiszállni, ez a lényeg. Egy pozíció megnyitása sok esetben nem elég, ezért kell a többi is. Kérem a segítségeteket! Köszönöm. Krisz

[3990] csábos2015-11-16 23:20:02

Vegyük észre, hogy az adott egyenesek kielégítik az

&tex;\displaystyle (x-1)(y-1)(z-1)-xyz=0&xet;

egyenletet. Ekkor &tex;\displaystyle x=y=-6z&xet; helyettesítéssel a

&tex;\displaystyle 24z^2+11z+1=0 &xet;

egyenlet adódik, melynek gyökei &tex;\displaystyle z=-\frac{1}{3}&xet; és &tex;\displaystyle z=-\frac{1}{8}&xet;

1. eset: &tex;\displaystyle z=-\frac{1}{3}&xet;. Ekkor a &tex;\displaystyle (2,2,\frac{-1}{3})&xet; ponton is átmegy az egyenes. Ha átfektetünk e ponton és pl. az &tex;\displaystyle x=z-1=0&xet; egyenesen egy síkot, akkor ez 1-1 pontban metszi a másik két egyenest. Ha ezek ,,véletlenül'' egy egyenesen vannak, akkor nyertünk. És nyertünk. A pontok:

&tex;\displaystyle (0,-2,1)&xet;,&tex;\displaystyle (1,0,\frac{1}{3})&xet;,&tex;\displaystyle (\frac{3}{2},1,0)&xet; és persze &tex;\displaystyle (2,2,-\frac{1}{3})&xet;. Ezek egy egyenesen vannak.

2. eset: &tex;\displaystyle z=-\frac{1}{8}&xet;. Ekkor a &tex;\displaystyle (\frac{3}{4},\frac{3}{4},-\frac{1}{8})&xet; pontbl fektetjük a síkot és a másik 3 pont: &tex;\displaystyle (0,3,1 )&xet;, &tex;\displaystyle (1,0, -\frac{1}{2}) )&xet; és &tex;\displaystyle (\frac{2}{3}),1,0 )&xet;

Előzmény: [3969] Lóczi Lajos, 2015-09-17 19:31:04
[3989] Loiscenter2015-11-11 16:43:17

Köszönöm szépen! szép a megoldás!

Előzmény: [3988] csábos, 2015-11-08 19:34:54
[3988] csábos2015-11-08 19:34:54

Ha van 1, akkor van 1+1, és akkor van minden természetes szám. Vegyük az

&tex;\displaystyle \frac{1}{\frac{1}{a}-\frac{1}{a+c}}=\frac{a^2}{c}+a&xet;

összefüggést. Ebből &tex;\displaystyle a&xet;-t kivonva &tex;\displaystyle c=1&xet; választással adódik &tex;\displaystyle a^2&xet;. Ha &tex;\displaystyle a=-1&xet;, akkor &tex;\displaystyle c=2&xet;-vel adódik &tex;\displaystyle \frac{a^2}{2}&xet;, amit önmagával összeadva adódik &tex;\displaystyle a^2&xet;.

Ezután a

&tex;\displaystyle \frac{b}{2}=\frac{1}{\frac{1}{b}+\frac{1}{b}}&xet;

trükkel csak a

&tex;\displaystyle 2ab=(a+b)^2-a^2-b^2&xet;

kifejezést kell felezni.

Előzmény: [3987] Loiscenter, 2015-11-08 08:23:17
[3987] Loiscenter2015-11-08 08:23:17

Modositananak a feladaton:

1 tartozik a szamhalazunkhoz. Csak kulönbséget (-) es recsiprok-at venni. Bizonyitando Összeadást, szorzást lehet elvégezni!

( Köszi Csábosnak hozászlásodért - de ez a néhány gomb 'sok' lenne?)

Előzmény: [3986] csábos, 2015-11-07 20:29:12
[3986] csábos2015-11-07 20:29:12

Arany Dániel 1980 3. kat 2. forduló 10. osztály 1. feladat.

Szerintem a számológépen van még néhány gomb, pl. a számjegyek.

Előzmény: [3985] Loiscenter, 2015-11-06 23:30:09
[3985] Loiscenter2015-11-06 23:30:09

Hajnal Péter : Elemi Kombinatorikai feladatok ( Polygon)

18.2 Feladat: Kis számológépünkön csupán összeadás és kivonás van, de egy szám reciprokát is képezhetjük. Kiszámolhatjuk - e vele két szám szorzatát?

PROBLÉMA: könyvben szereplö megoldás nem teljes, mert kész tényként tekintette hogy (a+1) létezik , holott nem mutatja hogy 1 van benne - igy a+1 nem bizonyitott hogy van benne S halmazban.

Segitsetek tisztázni ezt a problémat! Köszönöm!

[3984] csábos2015-10-22 13:11:04

Az összes ilyen tulajdonságú 4-edfokú polinom körülbelül:&tex;\displaystyle (x^2+1)(ax^2+bx+1)&xet; alakú, ahol &tex;\displaystyle 0< a<1&xet; és &tex;\displaystyle b^2-4a<0&xet;. A körülbelül az azt jelenti, hogy konstanssal lehet szorozni és &tex;\displaystyle x&xet; helyébe &tex;\displaystyle cx&xet;-et írni.

Előzmény: [3983] Lóczi Lajos, 2015-10-18 10:23:59
[3983] Lóczi Lajos2015-10-18 10:23:59

Szép példa! (Ráadásul eggyel kisebb a fokszáma, mint annak a példának, melyet egy 1999-es cikkben találtam korábban.)

A példádban az is szép, hogy az &tex;\displaystyle \epsilon_0=510663/50000000&xet; konstans egy egyszerű racionális szám:

az &tex;\displaystyle \epsilon x^5+\frac{31 x^4}{1000}+\frac{17 x^3}{50}+\frac{1031 x^2}{1000}+\frac{17 x}{50}+1&xet; polinom minden gyökének valós része negatív, ha &tex;\displaystyle 0<\epsilon<\epsilon_0&xet;, ám &tex;\displaystyle \epsilon=0&xet; vagy &tex;\displaystyle \epsilon=\epsilon_0&xet; esetén már fellépnek tiszta képzetes gyökök.

Előzmény: [3981] csábos, 2015-10-17 23:43:55
[3981] csábos2015-10-17 23:43:55

Nem.

&tex;\displaystyle 0.031 x^4+0.34 x^3+1.031 x^2+0.34 x+1&xet;

szerintem ellenpélda. Ennek gyöke az &tex;\displaystyle i&xet;. Fordítva gondolkoztam. Vegyük azt a polinomot, aminek gyökei az eredeti polinomunk gyökeinek a reciprokai, megszoroztam x-szel, majd hozzáadtam epszilont.

Megkérdeztem egy pár embertől, és ennek a polinomnak a fordítottjára jutottunk jutottunk. A feltételeket

http://lib.physcon.ru/doc?id=7b389ac0fb8f

innen ellenőriztük, a wikipédián

https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion

itt van.

Előzmény: [3980] Lóczi Lajos, 2015-10-13 00:38:49
[3980] Lóczi Lajos2015-10-13 00:38:49

Rögzítsünk egy &tex;\displaystyle n\ge 2&xet; egészt, egy pontosan &tex;\displaystyle (n-1)&xet;-edfokú egyváltozós valós &tex;\displaystyle p&xet; polinomot, és egy &tex;\displaystyle \epsilon_0>0&xet; számot.

Tudjuk, hogy minden &tex;\displaystyle 0<\epsilon\le \epsilon_0&xet; mellett az &tex;\displaystyle \epsilon x^n + p(x)&xet; polinom minden gyökének valós része negatív. Igaz-e, hogy az (&tex;\displaystyle \epsilon&xet;-tól független) &tex;\displaystyle p&xet; polinom minden gyökének valós része is negatív?

[3979] Lóczi Lajos2015-10-09 23:25:13

Még egy megjegyzés: attól, hogy a Reduce szerint az egy harmadfokú egyenlet gyöke, még nem biztos, hogy ne lehetne egyszerűsíteni; pl. a 0-ra rámondanád, hogy az &tex;\displaystyle x^3=0&xet; egyenlet gyöke?

Előzmény: [3977] emm, 2015-10-07 17:44:42
[3978] Lóczi Lajos2015-10-09 23:08:34

Szóval a Reduce parancs szerint több megoldás is létezik? Ezzel nem értek egyet. (Amúgy a kérdésben nemnegatív változók szerepelnek, nem pedig pozitívak.)

Előzmény: [3977] emm, 2015-10-07 17:44:42
[3977] emm2015-10-07 17:44:42

Mathematicával:

&tex;\displaystyle {FindInstance}\bigg[\bigg\{a+\alpha +A+b=1,\alpha \beta +A B+b=\frac{1}{2}, \alpha \beta ^2+A B^2+b=\frac{1}{3}, b \beta \gamma +b B cc+\alpha B c=\frac{1}{6},\alpha \beta ^3+A B^3+b=\frac{1}{4}, &xet;

&tex;\displaystyle b \beta \gamma +b B {cc}+\alpha \beta B c=\frac{1}{8}, b \beta ^2 \gamma +b B^2 {cc}+\alpha B^2 c=\frac{1}{12},b B c \gamma =\frac{1}{24},a>0,b>0,&xet;

&tex;\displaystyle c>0,A>0,B>0,cc>0,\alpha >0,\beta >0,\gamma >0\bigg\},\{\alpha ,\beta ,\gamma ,a,b,c,A,B,{cc}\}\bigg] &xet;

&tex;\displaystyle \left\{\alpha = \frac{1}{6},\beta = \frac{1}{2},\gamma = \frac{1}{2},a= \frac{1}{6},b= \frac{1}{6},c= 1,A= \frac{1}{2},B= \frac{1}{2},C= \frac{1}{2}\right\} &xet;

Reduce-al megadja az összeset, de kb. egy képernyőt elfoglal az eredményként kapott logikai kifejezés, és szerepel benne harmadfokú egyenlet gyöke is - szóval annyira nem szép.

Előzmény: [3974] Lóczi Lajos, 2015-10-02 12:32:21
[3976] Lóczi Lajos2015-10-06 20:25:37

Martin Kutta 114 éve oldotta meg valós változók esetén a felírt egyenletrendszert, és ezzel leírta az összes 4-lépéses 4-edrendű explicit Runge&tex;\displaystyle -&xet;Kutta-módszert, amely módszerek közönséges differenciálegyenletek numerikus analízisében azóta kedveltnek számítanak.

Ha megköveteljük a módszer együtthatóinak nemnegativitását, akkor olyan kitüntetett módszert kapnánk, amelynek bizonyos szempontból jobbak a stabilitási tulajdonságai. A kérdés tehát az, hogy a 4-lépéses 4-edrendű explicit módszerek 4 családjában van-e csupa nemnegatív együtthatóval bíró Runge&tex;\displaystyle -&xet;Kutta-módszer.

Előzmény: [3975] csábos, 2015-10-06 19:50:20
[3975] csábos2015-10-06 19:50:20

Szabad tudni, hogy ez miért érdekes? Köszi.

Előzmény: [3974] Lóczi Lajos, 2015-10-02 12:32:21
[3974] Lóczi Lajos2015-10-02 12:32:21

Határozzuk meg az &tex;\displaystyle a&xet;, &tex;\displaystyle b&xet;, &tex;\displaystyle c&xet;, &tex;\displaystyle A&xet;, &tex;\displaystyle B&xet;, &tex;\displaystyle C&xet;, &tex;\displaystyle \alpha&xet;, &tex;\displaystyle \beta&xet;, &tex;\displaystyle \gamma&xet; nemnegatív mennyiségek értékét, amelyek teljesítik az

&tex;\displaystyle a+\alpha +A+b=1,&xet;

&tex;\displaystyle \alpha \beta +A B+b=\frac{1}{2},&xet;

&tex;\displaystyle \alpha \beta ^2+AB^2+b=\frac{1}{3},&xet;

&tex;\displaystyle b \beta \gamma +b B C+\alpha B c=\frac{1}{6},&xet;

&tex;\displaystyle \alpha \beta ^3+AB^3+b=\frac{1}{4},&xet;

&tex;\displaystyle b \beta \gamma +b B C+\alpha \beta B c=\frac{1}{8},&xet;

&tex;\displaystyle b \beta ^2\gamma +b B^2 C+\alpha B^2 c=\frac{1}{12},&xet;

&tex;\displaystyle b B c \gamma =\frac{1}{24}&xet;

egyenleteket.

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]    [34. oldal]    [35. oldal]    [36. oldal]    [37. oldal]    [38. oldal]    [39. oldal]    [40. oldal]    [41. oldal]    [42. oldal]    [43. oldal]    [44. oldal]    [45. oldal]    [46. oldal]    [47. oldal]    [48. oldal]    [49. oldal]    [50. oldal]    [51. oldal]    [52. oldal]    [53. oldal]    [54. oldal]    [55. oldal]    [56. oldal]    [57. oldal]    [58. oldal]    [59. oldal]    [60. oldal]    [61. oldal]    [62. oldal]    [63. oldal]    [64. oldal]    [65. oldal]    [66. oldal]    [67. oldal]    [68. oldal]    [69. oldal]    [70. oldal]    [71. oldal]    [72. oldal]    [73. oldal]    [74. oldal]    [75. oldal]    [76. oldal]    [77. oldal]    [78. oldal]    [79. oldal]    [80. oldal]    [81. oldal]    [82. oldal]    [83. oldal]    [84. oldal]    [85. oldal]    [86. oldal]    [87. oldal]    [88. oldal]    [89. oldal]    [90. oldal]    [91. oldal]    [92. oldal]    [93. oldal]    [94. oldal]    [95. oldal]    [96. oldal]    [97. oldal]    [98. oldal]    [99. oldal]    [100. oldal]    [101. oldal]    [102. oldal]    [103. oldal]    [104. oldal]    [105. oldal]    [106. oldal]    [107. oldal]    [108. oldal]    [109. oldal]    [110. oldal]    [111. oldal]    [112. oldal]    [113. oldal]    [114. oldal]    [115. oldal]    [116. oldal]    [117. oldal]    [118. oldal]    [119. oldal]    [120. oldal]    [121. oldal]    [122. oldal]    [123. oldal]    [124. oldal]    [125. oldal]    [126. oldal]    [127. oldal]    [128. oldal]    [129. oldal]    [130. oldal]    [131. oldal]    [132. oldal]    [133. oldal]    [134. oldal]    [135. oldal]    [136. oldal]    [137. oldal]    [138. oldal]    [139. oldal]    [140. oldal]    [141. oldal]    [142. oldal]    [143. oldal]    [144. oldal]    [145. oldal]    [146. oldal]    [147. oldal]    [148. oldal]    [149. oldal]    [150. oldal]    [151. oldal]    [152. oldal]    [153. oldal]    [154. oldal]    [155. oldal]    [156. oldal]    [157. oldal]    [158. oldal]    [159. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Google   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma  
Oktatáskutató és Fejlesztő Intézet   Nemzeti Tehetség Program     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley