KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles
Current issue
Previous issues
Order Form
Special issues
Archives

 

English Issue, December 2002

Previous pageContentsNext pageORDER FORM


New advanced problems - competition A
(302-304.)

A. 302. Given the unit square ABCD and the point P on the plane, prove that

\(\displaystyle 3AP+5CP+\sqrt5(BP+DP)\ge6\sqrt2. \)

A. 303. x, y are non-negative numbers, and x3+y4\(\displaystyle \le\)x2+y3. Prove that

x3+y3\(\displaystyle \le\)2.

A. 304. Find all functions R+\(\displaystyle \mapsto\)R+, such that

f(x+y)+f(x).f(y)=f(xy)+f(x)+f(y)?

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley