KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles
Contest Rules
Entry Form
Problems
Results
Previous years

 

Exercises and problems in Informatics
November 2002

Please read The Conditions of the Problem Solving Competition.

I. 34. Binomial coefficients can be used to represent natural numbers in the so-called binomial base. For a fixed m (2\(\displaystyle \le\)m \(\displaystyle \le\)50) every natural number n (0\len\le10000) can uniquely be represented as

\(\displaystyle n={a_1\choose1}+{a_2\choose2}+\dots+{a_m\choose m}\), where 0\lea1<a2<...<am.

Your program (I34.pas, ...) should read the numbers n and m, then display the corresponding sequence a1,a2,...,am.

Example. Let n=41, then a1=1,a2=2,a3=4,a4=7, because

\(\displaystyle 41={1\choose1}+{2\choose2}+{4\choose3}+{7\choose4}=1+1+4+35.\)

(10 points)

I. 35. We put an ant close beside the base of a cylinder-jacket with radius R and height H. In every minute the ant creeps upwards M centimetres. The cylinder is rotated around its axis (which is just the Z-axis) anticlockwise completing T turns per minute. The ant starts from the point (R,0,0), and we are watching it at an angle of ALPHA degree relative to the Y-axis, see the figure.

1. ábra2. ábra

Write your program (I35.pas, ...) which reads the values of R (1\(\displaystyle \le\)R\(\displaystyle \le\)50), H (1\(\displaystyle \le\)H\(\displaystyle \le\)200), M (1\(\displaystyle \le\)M\(\displaystyle \le\)H), T (1\leT\le100) and ALPHA (0\(\displaystyle \le\)ALPHA<90), then displays the axonometric projection to the plane Y=0 of the path of the ant using continuous line on the visible side of the cylinder and dotted line on the back side.

Example. Figure 2 shows the path of the ant with R=50, H=200, M=1, T=40, ALPHA=30. (10 points)

I. 36. According to the trinomial theorem

\(\displaystyle {(x+y+z)}^n=\sum_{\textstyle{0\le a,b,c\le n\atop a+b+c=n}} {a+b+c\choose a,b,c}x^ay^bz^c. \)

The trinomial coefficients can be computed, for example, by the formula

\(\displaystyle {a+b+c\choose a,b,c}=\frac{(a+b+c)!}{a!b!c!}. \)

However, these factorials can be very large, thus their direct computation is not always feasible. Nevertheless, writing trinomial coefficients as a product of binomial coefficients can settle this problem. Prepare your sheet (I36.xls) which, if n (n=a+b+c, n\le20) is entered into a given cell, displays a table of trinomial coefficients, similar to the one below.

a/b012345
015101051
1520302050
21030301000
3102010000
4550000
5100000

The example shows the coefficients when n=5. (10 points)


Send your solutions to the following e-mail address:

Deadline: 13 December 2002

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley