Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Matematikából kitűzött gyakorlatok és feladatok
2004. november

Kérjük, olvassa el a versenykiírást.


A K pontversenyben kitűzött gyakorlatok

A K-jelű feladatokat csak 9-edik osztályosok küldhetik be. Minden K-jelű feladat helyes megoldásáért 6 pont jár.

K. 13. Határozzuk meg a 71+72+...+72005 összeg utolsó két számjegyét.

K. 14. Alsóhuta, Felsőhuta és Középhuta között számos út vezet. Tudjuk azonban, hogy bármely két falu között a közvetlen utak száma legalább 3 és legfeljebb 10. Alsóhutáról Felsőhutára eljuthatunk közvetlenül, valamint Középhután keresztül is, összesen 33 különböző útvonalon. Hasonlóan Középhutáról Felsőhuta közvetlenül, valamint Alsóhuta érintésével is megközelíthető, összesen 23 különböző módon. Hány különböző útvonal vezet összesen Középhutáról Alsóhutára (közvetlenül, illetve Felsőhután keresztül)?

Példa: Az ábrán Alsóhutáról Felsőhutára 2 út vezet közvetlenül és 3.2=6 Középhután keresztül, ez összesen 8.

K. 15. Az ABCD konvex négyszög A csúcsánál 100o-os szög van. Tudjuk, hogy az AC átló egy egyenlő oldalú és egy egyenlő szárú háromszögre osztja a négyszöget. Számítsuk ki a négyszög belső szögeinek nagyságát.

K. 16. a) A 9, 8, 7, 6 számjegyek egyszeri felhasználásával alkossunk két darab kétjegyű számot úgy, hogy szorzatuk a lehető legnagyobb legyen.

b) A 9, 8, 7, 6, 5, 4 számjegyek egyszeri felhasználásával alkossunk három darab kétjegyű számot úgy, hogy szorzatuk a lehető legnagyobb legyen.

Indokoljuk is mindkét esetben, hogy miért a kapott számok lesznek a megfelelő számok.

K. 17. Az ABCD konkáv négyszög oldalai AB=13 cm, BC=4 cm, CD=3 cm, DA= 12 cm, a C csúcsnál lévő belső szöge pedig 270o. Mekkora a négyszög területe?

K. 18. Határozzuk meg az a, b, c és d különböző számjegyeket úgy, hogy \(\displaystyle \overline{abcd}:\overline{dcba}=4\), ahol \(\displaystyle \overline{abcd}\) és \(\displaystyle \overline{dcba}\) négyjegyű számokat jelöl.


A C pontversenyben kitűzött gyakorlatok

Minden C-jelű feladat helyes megoldásáért 5 pont jár.

C. 780. Egy matematika versenyen három feladatot tűztek ki. Az első feladatot a résztvevők 85 százaléka oldotta meg, a másodikat 80, a harmadikat pedig 75 százalékuk. Bizonyítsuk be, hogy legalább 40 százalékuk megoldotta mind a három feladatot.

C. 781. Határozzuk meg azokat a pozitív p>q>r prímszámokat, amelyekre

p2- (q+r)2=136.

C. 782. A parttal párhuzamosan, attól 200 méterre halad egy vitorlás a Balatonon. Valaki folyamatosan egy irányban úszva szeretné elérni a közeledő hajót. A parthoz képest milyen szögben kell elindulnia, ha a vitorlás sebessége 15 km/h, az úszó sebessége 2 km/h, és induláskor a parton mérve 2 km távolságban van a hajótól?

Javasolta: Koncz Levente (Budapest)

C. 783. Az ábrán látható szürkével jelölt tartományt az A csúcsú 30o-os szög szárai és egy O középpontú körív határolják. Mekkora a tartomány területe, ha

AO=AB=1.

C. 784. Az ABCDEFGH téglatestben - a szokásos betűzéssel - AE = 1, AD = 2, AB=3. Mekkora annak a testnek a térfogata, amelynek a csúcsai A és C, valamint az EFGH lap éleinek a felezőpontjai?


A B pontversenyben kitűzött feladatok

A B-jelű feladatokra kapható pontszám a feladatok nehézségétől függ. Minden hónapban a 6 legnagyobb pontszám számít be a pontversenybe.

B. 3762. Két vízzel színültig töltött henger alakú tartályból pontosan délben egy-egy azonos teljesítményű szivattyú egyenletes sebességgel szivattyúzni kezdte a vizet. 14 órakor a két tartályban ugyanolyan magasan állt a víz. 17 órakor kiürült az első tartály, 20 órakor pedig a második tartály is. Ha a második tartály 10 méter magas, akkor milyen magas az első?

(3 pont)

B. 3763. Az ABCD konvex négyszög belsejében adott egy P pont. Bizonyítsuk be, hogy

PA2+PB2+PC2+PD2\(\displaystyle \ge\)2tABCD.

(3 pont)

B. 3764. Az ABC szabályos háromszög AB oldalának A-hoz közelebbi negyedelőpontja C1, a BC oldal negyedelőpontjai pedig A1, A2 és A3. Mekkora az AA1C1, az AA2C1 és az AA3C1 szögek összege?

(4 pont)

B. 3765. Adott 25 különböző, 1000-nél nem nagyobb pozitív egész szám úgy, hogy bármely kettőnek a szorzata négyzetszám. Bizonyítsuk be, hogy az adott számok is négyzetszámok.

(4 pont)

B. 3766. Egy matematika versenyen négy feladatot tűztek ki. Az első feladatot a résztvevők 85 százaléka oldotta meg, a másodikat 80, a harmadikat 75, a negyediket pedig 70 százalékuk. A résztvevőknek legalább hány százaléka oldotta meg valamennyi feladatot?

(4 pont)

B. 3767. Egy háromszög \(\displaystyle \alpha\), \(\displaystyle \beta\), \(\displaystyle \gamma\) szögeire

sin \(\displaystyle \alpha\)+sin \(\displaystyle \beta\)=(cos \(\displaystyle \alpha\)+cos \(\displaystyle \beta\))sin \(\displaystyle \gamma\)

teljesül. Mekkora a \(\displaystyle \gamma\) szög?

(3 pont)

B. 3768. Egy T0 téglalapot az egyik oldalával párhuzamosan szétvágunk két nem egybevágó téglalapra, T1-re és T1'-re úgy, hogy a két rész hasonló legyen. Az így adódó T1 téglalapra megismételjük ugyanezt, a kapott részek egyikére ismét, és így tovább. Van-e olyan T0 téglalap, amelyből kiindulva ez az eljárás korlátlanul folytatható?

(5 pont)

B. 3769. Adott egy ellipszis három érintője és egyik fókusza. Szerkesszük meg a másik fókuszát.

(4 pont)

B. 3770. Hány részre osztják a teret egy szabályos oktaéder lapsíkjai?

(5 pont)

B. 3771. Legyen \(\displaystyle a_k=\frac{1}{\binom{n}{k}}\), \(\displaystyle b_k=\frac{1}{2^{n-k}}\), k =1,2,...,n.

Bizonyítsuk be, hogy

\(\displaystyle a_1+\frac{a_2}{2}+\frac{a_3}{3}+\ldots+\frac{a_n}{n}=b_1+\frac{b_2}{2}+ \frac{b_3}{3}+\ldots+\frac{b_n}{n}. \)

(5 pont)


Az A pontversenyben kitűzött nehezebb feladatok

Minden A-jelű feladat helyes megoldásáért 5 pont jár.

A. 356. A Pn(x) polinomsorozatot a következő rekurzióval definiáljuk: P0(x)=0, P1(x)=1 és Pn(x)=x.Pn-1(x)+(1-x).Pn-2(x). Határozzuk meg Pn(x) gyökeit.

A. 357. Adottak a k1,k2,k3, ... diszjunkt körök. A ki kör sugara \(\displaystyle \frac{1}{i}\), középpontja Pi. Lehetséges-e, hogy a Pi pontsorozat konvergens?

A. 358. Az a, b, c pozitív számokra teljesül, hogy abc=1. Bizonyítsuk be, hogy

\(\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{a+b+c}\ge2 \left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\cdot\frac{1}{a^2+b^2+c^2}. \)

A matematika gyakorlatok és feladatok megoldásai a következő címekre küldhetők:

    KöMaL Szerkesztőség
    Budapest 112, Pf. 32.  1518
illetve
    megoldas@komal.hu (Az interneten keresztül történő beküldésről olvassa el tájékoztatónkat)

A beküldési határidő:

    A K-jelű feladatoknál 2004. december 10.,

    Az A-, B- és C-jelű feladatoknál 2004. december 15.,