KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years



Order KöMaL!

Competitions Portal

A. 373. P is a point in the interior of the quadrilateral A1A2A3A4 that does not lie on either diagonal. The points Bi lie in the interior of each line segment AiP. Let Cij be the intersection of the lines AiBj and AjBi (1\lei<j \le4). Prove that the line segments C12C34, C13C24, C14C23 are all concurrent.

(5 points)

Deadline expired on 17 May 2005.

Statistics on problem A. 373.
4 students sent a solution.
5 points:Pálinkás Csaba, Paulin Roland, Strenner Balázs.
2 points:1 student.

  • Problems in Mathematics of KöMaL, April 2005

  • Our web pages are supported by:   Ericsson   Google   Cognex   Emberi ErĹ‘forrás TámogatáskezelĹ‘   Emberi ErĹ‘források MinisztĂ©riuma  
    OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   Nemzeti TehetsĂ©g Program     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley