KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 389. (January 2006)

A. 389. Point P lies in the interior of the acute triangle ABC. The circumcenters of triangles ABC, BCP, CAP and ABP are O, A1, B1 and C1, respectively. Prove that


\frac{\mathrm{area}\,(\Delta A_1B_1O)}{\mathrm{area}\,(\Delta ABP)} =
\frac{\mathrm{area}\,(\Delta B_1C_1O)}{\mathrm{area}\,(\Delta BCP)} =
\frac{\mathrm{area}\,(\Delta C_1A_1O)}{\mathrm{area}\,(\Delta CAP)}.

(5 pont)

Deadline expired on 15 February 2006.


Statistics:

13 students sent a solution.
5 points:Bogár 560 Péter, Dücső Márton, Estélyi István, Gyenizse Gergő, Hujter Bálint, Jankó Zsuzsanna, Kisfaludi-Bak Sándor, Kónya 495 Gábor, Nagy 224 Csaba, Paulin Roland, Tomon István.
2 points:1 student.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley