KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 400. Prove that


\frac{x}{y+2z+3u}+ \frac{y}{z+2u+3x}+ \frac{z}{u+2x+3y} +\frac{u}{x+2y+3z} \ge \frac{2}{3}.

for all real numbers x, y, z, u.

(5 points)

Deadline expired on 18 May 2006.


Statistics on problem A. 400.
13 students sent a solution.
5 points:Blázsik Zoltán, Erdélyi Márton, Estélyi István, Gyenizse Gergő, Hujter Bálint, Jankó Zsuzsanna, Kisfaludi-Bak Sándor, Kónya 495 Gábor, Mészáros Gábor, Nagy 224 Csaba, Paulin Roland, Tomon István, Ureczky Bálint.


  • Problems in Mathematics of KöMaL, April 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley