KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 424. Given a convex quadrilateral ABCD and a point P in its interior such that AP=CP, \measuredangle ABC=\measuredangle APD and \measuredangle CDA=\measuredangle CPB. Prove that

DA.AB.BP=BC.CD.DP.

(5 points)

Deadline expired on 16 April 2007.


Statistics on problem A. 424.
9 students sent a solution.
5 points:Hujter Bálint, Kisfaludi-Bak Sándor, Kónya 495 Gábor, Korándi Dániel, Kornis Kristóf, Lovász László Miklós, Nagy 235 János, Tomon István.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, March 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley