Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem A. 424. (March 2007)

A. 424. Given a convex quadrilateral ABCD and a point P in its interior such that AP=CP, \measuredangle ABC=\measuredangle APD and \measuredangle CDA=\measuredangle CPB. Prove that

DA.AB.BP=BC.CD.DP.

(5 pont)

Deadline expired on April 16, 2007.


Statistics:

9 students sent a solution.
5 points:Hujter Bálint, Kisfaludi-Bak Sándor, Kónya 495 Gábor, Korándi Dániel, Kornis Kristóf, Lovász László Miklós, Nagy 235 János, Tomon István.
Unfair, not evaluated:1 solution.

Problems in Mathematics of KöMaL, March 2007