KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 425. Let n\ge2 and let a_1,a_2,\ldots,a_n, x_1,x_2,\ldots,x_n be positive real numbers such that a1+...+an=x1+...+xn=1. Prove that


2\sum_{1\le i<j\le n}x_ix_j \le \frac{n-2}{n-1} + \sum_{i=1}^n \frac{a_ix_i^2}{1-a_i}\,.

Polish competition problem

(5 points)

Deadline expired on 15 May 2007.


Statistics on problem A. 425.
16 students sent a solution.
5 points:Bogár 560 Péter, Dobribán Edgár, Gyenizse Gergő, Honner Balázs, Hujter Bálint, Kiarash Adl, Kisfaludi-Bak Sándor, Kónya 495 Gábor, Lovász László Miklós, Nagy 224 Csaba, Nagy 235 János, Tomon István, Varga Bonbien.
4 points:Kornis Kristóf, Nagy 314 Dániel.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, April 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley