KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 429. (May 2007)

A. 429. Find all pairs f(x), g(x) of polynomials with integer coefficients satisfying

f(g(x))=x2007+2x+1.

(Proposed by Katalin Gyarmati)

(5 pont)

Deadline expired on 15 June 2007.


Solution. Deriving the equation,

f'(g(x)).g'(x)=2007x2006+2.

By Eisenstein's criterion, the polynomial 2007x206+2 is irreducible. Hence, one of the two factors is constant. Since gcd(2007,2)=1, this constant must be 1 or -1.

If g'(x)=1 then g(x)=x+c with some integer c and f(x)=(x-c)2007+2(x-c)+1.

If g'(x)=-1 then g(x)=-x+c and f(x)=(-x+c)2007+2(-x+c)+1.

If f'(g(x))=1 then g'(x)=2007x2006+2. The degree of polynomial g(x) is 2007, and it attains infinitely many distinct values. So f'(g(x))=1 is possible only if f'(x)=1. Then f(x)=x+c and g(x)=x2007+2x+1-c.

Finally, if f'(g(x))=-1 then, similarly to the previous case, f'(x)=-1, f(x)=-x+c and g(x)=-x2007-2x-1+c.


Statistics:

8 students sent a solution.
5 points:Gyenizse Gergő, Hujter Bálint, Kisfaludi-Bak Sándor, Lovász László Miklós, Nagy 224 Csaba, Tomon István.
4 points:Nagy 235 János.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley