Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem A. 435. (October 2007)

A. 435. Prove


(a+b+c)\left(\frac1a+\frac1b+\frac1c\right) \ge
6\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)

whenever 1\lea,b,c\le2.

Vietnamese problem

(5 pont)

Deadline expired on November 15, 2007.


Statistics:

12 students sent a solution.
5 points:Huszár Kristóf, Korándi Dániel, Lovász László Miklós, Nagy 235 János, Nagy 314 Dániel, Tomon István, Tossenberger Anna, Tuan Nhat Le, Wolosz János.
0 point:3 students.

Problems in Mathematics of KöMaL, October 2007