KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 467. Let ABCD be a circumscribed trapezoid such that the lines AD and BC intersect at point R. Denote by I the incenter of the trapezoid, and let the incircle touch the sides AB and CD at points P and Q, respectively. Let the line through P, which is perpendicular to PR, meet the lines angle bisector AI and BI at points A1 and B1, respectively. Similarly, let the line through Q, perpendicular to QR, meet CI and DI at C1 and D1, respectively. Show that A1D1=B1C1.

Proposed by: Géza Bohner, Budapest

(5 points)

Deadline expired on 15 January 2009.


Statistics on problem A. 467.
6 students sent a solution.
5 points:Éles András, Nagy 235 János, Nagy 314 Dániel, Nagy 648 Donát, Wolosz János.
4 points:Tomon István.


  • Problems in Mathematics of KöMaL, December 2008

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley