KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 485. Let ABCD be a tetrahedron with circumcenter O. Suppose that the points P, Q and R are interior points of the edges AB, AC and AD, respectively. Let K, L, M and N be the centroids of the triangles PQD, PRC, QRB and PQR, respectively. Prove that if the plane PQR is tangent to the sphere KLMN then OP=OQ=OR.

(5 points)

Deadline expired on 10 November 2009.


Statistics on problem A. 485.
6 students sent a solution.
5 points:Éles András, Frankl Nóra, Nagy 235 János, Nagy 648 Donát, Szabó 928 Attila.
4 points:Weisz Ágoston.


  • Problems in Mathematics of KöMaL, September 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley