KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 491. (November 2009)

A. 491. In the triangle \(\displaystyle A_1A_2A_3\), for each \(\displaystyle i=1,2,3\), the excircle, which is tangent to the side \(\displaystyle A_{i+1}A_{i+2}\), touches the half lines \(\displaystyle A_iA_{i+1}\) and \(\displaystyle A_iA_{i+2}\) at \(\displaystyle P_i\) and \(\displaystyle Q_i\), respectively. (The indices are considered modulo 3, e.g. \(\displaystyle A_4=A_1\) and \(\displaystyle A_5=A_2\).) The lines \(\displaystyle P_iP_{i+1}\) and \(\displaystyle Q_iQ_{i+2}\) meet at \(\displaystyle R_i\); finally, the lines \(\displaystyle P_{i+1}P_{i+2}\) and \(\displaystyle Q_{i+1}Q_{i+2}\) meet at \(\displaystyle S_i\) (\(\displaystyle i=1,2,3\)). Prove that the lines \(\displaystyle R_1S_1\), \(\displaystyle R_2S_2\) and \(\displaystyle R_3S_3\) are concurrent.

(From the idea of Bálint Bíró, Eger)

(5 pont)

Deadline expired on 10 December 2009.


Statistics:

8 students sent a solution.
5 points:Ágoston Tamás, Bodor Bertalan, Éles András, Frankl Nóra, Nagy 235 János, Nagy 648 Donát, Szabó 928 Attila, Weisz Ágoston.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley