KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 504. Prove that for arbitrary integers 0<r<k<t there exists a positive integer N(r,k,t) which satisfies the following property: whenever G is an r-uniform hypergraph with at least N(r,k,t) vertices such that there is at least one hyperedge on any k vertices, then G contains a complete subgraph with t vertices. (A hypergraph is a graph whose edges are arbitrary subsets of the vertices. The graph is called r-uniform if all edges contain exactly r vertices. An r-uniform hypergraph is complete if any r of its vertices form an edge.)

(5 points)

Deadline expired on 12 April 2010.


Statistics on problem A. 504.
7 students sent a solution.
5 points:Backhausz Tibor, Bodor Bertalan, Éles András, Frankl Nóra, Nagy 235 János, Weisz Ágoston.
4 points:Nagy 648 Donát.


  • Problems in Mathematics of KöMaL, March 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley