KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 515. (October 2010)

A. 515. There is given a triangle ABC. For every 0<t<1 let U(t) and V(t) be the points which divide the line segments AB and BC in the ratio t:(1-t), respectively. Prove that there is a parabola which is tangent to all lines U(t)V(t).

(5 pont)

Deadline expired on 10 November 2010.


Statistics:

13 students sent a solution.
5 points:Ágoston Tamás, Backhausz Tibor, Bágyoni-Szabó Attila, Damásdi Gábor, Frankl Nóra, Kalina Kende, Mester Márton, Nagy 235 János, Nagy 648 Donát, Strenner Péter.
4 points:Lenger Dániel, Weisz Ágoston.
3 points:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley