KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 517. Let m\ge3 be a positive integer, and let \Phim(x) be the mth cyclotomic polynomial, and denote by \Psim(x) the polynomial with integer coefficients for which x^{\varphi(m)/2} \Psi_m\left(x+\frac1x\right) = \Phi_m(x). Prove that for every integer a, any prime divisor of the number \Psim(a) either divides m or is of the form mk\pm1.

(5 points)

Deadline expired on 10 November 2010.


Statistics on problem A. 517.
5 students sent a solution.
5 points:Backhausz Tibor.
4 points:Ágoston Tamás, Nagy 235 János, Nagy 648 Donát.
3 points:1 student.


  • Problems in Mathematics of KöMaL, October 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley