KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 570. Given a triangle ABC. For an arbitrary interior point X of the triangle denote by A1(X) the point intersection of the lines AX and BC, denote by B1(X) the point intersection of the lines BX and CA, and denote by C1(X) the point intersection of the lines CX and AB. Construct such a point P in the interior of the triangle for which each of the quadrilaterals AC1(P)PB1(P), BA1(P)PC1(P) and CB1(P)PA1(P) has an inscribed circle.

Proposed by: G. Holló, Budapest

(5 points)

Deadline expired on 12 November 2012.


Statistics on problem A. 570.
8 students sent a solution.
5 points:Bodnár Levente, Janzer Olivér, Omer Cerrahoglu, Szabó 789 Barnabás.
3 points:1 student.
1 point:1 student.
0 point:2 students.


  • Problems in Mathematics of KöMaL, October 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley