KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 571. The side lengths of a triangle are a, b, and c. Prove that


\sqrt{\frac{(2a+c)(2b+c)}{(3a+b)(3b+a)}} +
\sqrt{\frac{(2b+a)(2c+a)}{(3b+c)(3c+b)}} +
\sqrt{\frac{(2c+b)(2a+b)}{(3c+a)(3a+c)}} < \frac52.

Proposed by: Daniel Campos, San Jose, Costa Rica

(5 points)

Deadline expired on 12 November 2012.


Solution. Notice that we have equality in the degenerate case when one of a,b,c is zero and the other two are equal.

We show that


\sqrt{\frac{(2a+c)(2b+c)}{(3a+b)(3b+a)}} < \frac{a+b+3c}{2(a+b+c)}.
(1)

(This estimate preserves equality in the case mentioned.)

Indeed,


\left(\frac{a+b+3c}{2(a+b+c)}\right)^2 - \frac{(2a+c)(2b+c)}{(3a+b)(3b+a)} =


= \frac{(a+b-c)\Big(8(a+b)^2c+20(a+b)c^2+4c^3+(3a+3b+5c)(a-b)^2\Big)}{4(a+b+c)^2(3a+b)(3b+a)}
> 0.

By the cyclic permutations of the variables we get \sqrt{\frac{(2b+a)(2c+a)}{(3b+c)(3c+b)}}<\frac{3a+b+c}{2(a+b+c)} and \sqrt{\frac{(2c+b)(2a+b)}{(3c+a)(3a+c)}}<\frac{a+3b+c}{2(a+b+c)}. The sum of these and (1) is the statement of the problem.


Statistics on problem A. 571.
11 students sent a solution.
5 points:Bodnár Levente, Cyril Letrouit, Herczeg József, Janzer Olivér, Kúsz Ágnes, Maga Balázs, Nagy Róbert, Omer Cerrahoglu, Williams Kada.
0 point:2 students.


  • Problems in Mathematics of KöMaL, October 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley