KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 573. (November 2012)

A. 573. Let D={0,1,2,...,9} be the set of decimal digits, and let R\subsetD×D be a set of ordered pairs of digits. An infinite sequence (a1,a2,a3,...) of digits is said to be compatible with R if (aj,aj+1)\inR for all positive integer j. Determine the smallest positive integer K with the property that if an arbitrary set R\subsetD×D is compatible with at least K distinct digit sequences then R is compatible with infinitely many digit sequences.

Based on the 5th problem of CIIM 2012, Guanajuato, Mexico

(5 pont)

Deadline expired on 10 December 2012.


Statistics:

>
15 students sent a solution.
5 points:Ágoston Péter, Fehér Zsombor, Janzer Olivér, Maga Balázs, Omer Cerrahoglu, Vályi András, Williams Kada, Zilahi Tamás.
4 points:Herczeg József, Ioan Laurentiu Ploscaru.
2 points:2 students.
1 point:1 student.
0 point:2 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley