KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 584. In 3-space, let S be a non-degenerate conic section which is not a circle. Consider the apices of those right circular conical surfaces that contain S. (a) Show that these points lie on a conic section, uniquely determined by S. (b) Denote by C(S) the conic section that contains the possible apices. Prove that C(C(S))=S for arbitrary S.

(5 points)

Deadline expired on 10 April 2013.


Statistics on problem A. 584.
7 students sent a solution.
5 points:Di Giovanni Márk, Fehér Zsombor, Herczeg József, Janzer Olivér, Szabó 928 Attila.
4 points:Machó Bónis.
0 point:1 student.


  • Problems in Mathematics of KöMaL, March 2013

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley