KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 615. (April 2014)

A. 615. Basil and Peter play the following game. Basil writes 100 real numbers on the board. After that they move alternately; Peter is first. In every move, the next player chooses two numbers, erases them and replaces both of them by their mean. Peter wins if he can achieve that the sum of suitably chosen 50 numbers is equal to the sum of the other 50 numbers. Determine whether Basil can prevent this.

Proposed by: I. Bogdanov and A. Shapovalov

(5 pont)

Deadline expired on 12 May 2014.


Statistics:

7 students sent a solution.
5 points:Ágoston Péter, Williams Kada.
3 points:1 student.
1 point:1 student.
0 point:3 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley