KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 619. (May 2014)

A. 619. There are given four rays, \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) and \(\displaystyle d\) in space, starting from the same point, laying in a plane \(\displaystyle \varPi\). For an arbitrary acute angle \(\displaystyle \varphi\), rotate \(\displaystyle \varPi\) by angle \(\displaystyle \varphi\) in positive direction around each of the four rays; denote the rotated planes by \(\displaystyle A_\varphi\), \(\displaystyle B_\varphi\), \(\displaystyle \varGamma_\varphi\) and \(\displaystyle \varDelta_\varphi\), respectively. Let \(\displaystyle \varSigma_\varphi\) be the plane through the intersection line of \(\displaystyle A_\varphi\) and \(\displaystyle B_\varphi\), and the intersection line of \(\displaystyle \varGamma_\varphi\) and \(\displaystyle \varDelta_\varphi\). Show that the planes \(\displaystyle \varSigma_\varphi\) share a common line.

(5 pont)

Deadline expired on 10 June 2014.


Statistics:

4 students sent a solution.
5 points:Ágoston Péter, Fehér Zsombor, Williams Kada.
3 points:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley