KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 627. Let \(\displaystyle n\ge1\) be a fixed integer. Calculate the distance \(\displaystyle \inf_{p,f} \max_{0\le x\le 1} \big|f(x)-p(x)\big|\), where \(\displaystyle p\) runs over polynomials of degree less than \(\displaystyle n\) with real coefficients and \(\displaystyle f\) runs over functions \(\displaystyle f(x) = \sum_{k=n}^\infty c_k x^k\) defined on the closed interval \(\displaystyle [0,1]\), where \(\displaystyle c_k\ge0\) and \(\displaystyle \sum_{k=n}^\infty c_k=1\).

Miklós Schweitzer competition, 2014

(5 points)

Deadline expired on 10 December 2014.


Statistics on problem A. 627.
3 students sent a solution.
5 points:Williams Kada.
3 points:1 student.
0 point:1 student.


  • Problems in Mathematics of KöMaL, November 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley