KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 628. Is it true that for every infinite sequence \(\displaystyle x_1,x_2,\ldots\) of integers satisfying \(\displaystyle |x_{k+1}-x_k|=1\) for every positive integer \(\displaystyle k\), there exists a sequence \(\displaystyle k_1<k_2<\ldots<k_{2014}\) of positive integers such that as well the indices \(\displaystyle k_1,k_2,\ldots,k_{2014}\) as the numbers \(\displaystyle x_{k_1},x_{k_2},\ldots,x_{k_{2014}}\) (in this order) form arithmethic progressions?

Proposed by: E. Csóka, Warwick and Ben Green, Oxford

(5 points)

Deadline expired on 10 December 2014.


Statistics on problem A. 628.
2 students sent a solution.
0 point:2 students.


  • Problems in Mathematics of KöMaL, November 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley