KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 630. (December 2014)

A. 630. The konvex quadrilateral \(\displaystyle ABCD\) has an inscribed circle with center \(\displaystyle I\). The rays \(\displaystyle AB\) and \(\displaystyle DC\) meet at point \(\displaystyle F\), the rays \(\displaystyle AD\) and \(\displaystyle BC\) meet at point \(\displaystyle G\). Let \(\displaystyle \mathcal{E}\) be the ellipse with foci \(\displaystyle F\) and \(\displaystyle G\) that passes through points \(\displaystyle B\) and \(\displaystyle D\), and let \(\displaystyle \mathcal{H}\) be the hyperbola branch with foci \(\displaystyle F\) and \(\displaystyle G\) that passes through points \(\displaystyle A\) and \(\displaystyle C\). Denote by \(\displaystyle P\) and \(\displaystyle Q\) the intersections of \(\displaystyle \mathcal{E}\) and \(\displaystyle \mathcal{H}\). Show that the points \(\displaystyle P\), \(\displaystyle Q\) and \(\displaystyle I\) are collinear.

(5 pont)

Deadline expired on January 12, 2015.


Statistics:

10 students sent a solution.
5 points:Di Giovanni Márk, Fehér Zsombor, Janzer Barnabás, Lajkó Kálmán, Nagy-György Pál, Papp 893 Marcell, Saranesh Prembabu, Szabó 789 Barnabás, Szőke Tamás, Williams Kada.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley