KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 630. The konvex quadrilateral \(\displaystyle ABCD\) has an inscribed circle with center \(\displaystyle I\). The rays \(\displaystyle AB\) and \(\displaystyle DC\) meet at point \(\displaystyle F\), the rays \(\displaystyle AD\) and \(\displaystyle BC\) meet at point \(\displaystyle G\). Let \(\displaystyle \mathcal{E}\) be the ellipse with foci \(\displaystyle F\) and \(\displaystyle G\) that passes through points \(\displaystyle B\) and \(\displaystyle D\), and let \(\displaystyle \mathcal{H}\) be the hyperbola branch with foci \(\displaystyle F\) and \(\displaystyle G\) that passes through points \(\displaystyle A\) and \(\displaystyle C\). Denote by \(\displaystyle P\) and \(\displaystyle Q\) the intersections of \(\displaystyle \mathcal{E}\) and \(\displaystyle \mathcal{H}\). Show that the points \(\displaystyle P\), \(\displaystyle Q\) and \(\displaystyle I\) are collinear.

(5 points)

Deadline expired on 12 January 2015.


Statistics on problem A. 630.
10 students sent a solution.
5 points:Di Giovanni Márk, Fehér Zsombor, Janzer Barnabás, Lajkó Kálmán, Nagy-György Pál, Papp 893 Marcell, Saranesh Prembabu, Szabó 789 Barnabás, Szőke Tamás, Williams Kada.


  • Problems in Mathematics of KöMaL, December 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley