KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 631. (December 2014)

A. 631. Let \(\displaystyle k\ge1\) and let \(\displaystyle I_1,\ldots,I_k\) be non-degenerate subintervals of the interval \(\displaystyle [0, 1]\). Prove \(\displaystyle \sum \frac1{|I_i\cup I_j|} \ge k^2\) where the summation is over all pairs \(\displaystyle (i,j)\) of indices such that \(\displaystyle I_i\) and \(\displaystyle I_j\) are not disjoint.

Miklós Schweitzer competition, 2014

(5 pont)

Deadline expired on 12 January 2015.


Statistics:

3 students sent a solution.
5 points:Williams Kada.
3 points:1 student.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley