KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 632. (January 2015)

A. 632. Let \(\displaystyle ABCD\) be a convex quadrilateral. In the triangle \(\displaystyle ABC\) let \(\displaystyle I\) and \(\displaystyle J\) be the incenter and the excenter opposite to vertex \(\displaystyle A\), respectively. In the triangle \(\displaystyle ACD\) let \(\displaystyle K\) and \(\displaystyle L\) be the incenter and the excenter opposite to vertex \(\displaystyle A\), respectively. Show that the lines \(\displaystyle IL\) and \(\displaystyle JK\), and the bisector of the angle \(\displaystyle BCD\) are concurrent.

Russian problem

(5 pont)

Deadline expired on 10 February 2015.


Statistics:

5 students sent a solution.
5 points:Fehér Zsombor, Janzer Barnabás, Nagy-György Pál, Saranesh Prembabu, Williams Kada.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley