KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up


Problem A. 641. (April 2015)

A. 641. Determine whether there is a finite, nonempty subset \(\displaystyle S\) of the square grid in the plane such that every element of \(\displaystyle S\) has at least two neighbours in \(\displaystyle S\) and \(\displaystyle S\) does not contain four points that are the vertices of a square (with sides not necessary parallel to the coordinate axes)?

Proposed by: Mátyás Sustik, San Francisco

(5 pont)

Deadline expired on 11 May 2015.


1 student sent a solution.
5 points:Fehér Zsombor.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley