KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 641. Determine whether there is a finite, nonempty subset \(\displaystyle S\) of the square grid in the plane such that every element of \(\displaystyle S\) has at least two neighbours in \(\displaystyle S\) and \(\displaystyle S\) does not contain four points that are the vertices of a square (with sides not necessary parallel to the coordinate axes)?

Proposed by: Mátyás Sustik, San Francisco

(5 points)

Deadline expired on 11 May 2015.


Statistics on problem A. 641.
1 student sent a solution.
5 points:Fehér Zsombor.


  • Problems in Mathematics of KöMaL, April 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley