KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem A. 642. (April 2015)

A. 642. Let \(\displaystyle n\ge3\), let \(\displaystyle x_1,\ldots,x_n\) be nonnegative numbers, and let \(\displaystyle A=\sum_{i=1}^n x_i\), \(\displaystyle B= \sum_{i=1}^n x_i^2\) and \(\displaystyle C= \sum_{i=1}^n x_i^3\). Prove that \(\displaystyle (n+1)A^2B + (n-2)B^2 \ge A^4 + (2n-2)AC\).

(5 pont)

Deadline expired on May 11, 2015.


Statistics:

10 students sent a solution.
5 points:Csépai András, Di Giovanni Márk, Fehér Zsombor, Janzer Barnabás, Schrettner Bálint, Szabó 789 Barnabás, Williams Kada.
4 points:Adnan Ali, Glasznova Maja.
3 points:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley