KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 642. Let \(\displaystyle n\ge3\), let \(\displaystyle x_1,\ldots,x_n\) be nonnegative numbers, and let \(\displaystyle A=\sum_{i=1}^n x_i\), \(\displaystyle B= \sum_{i=1}^n x_i^2\) and \(\displaystyle C= \sum_{i=1}^n x_i^3\). Prove that \(\displaystyle (n+1)A^2B + (n-2)B^2 \ge A^4 + (2n-2)AC\).

(5 points)

Deadline expired on 11 May 2015.


Statistics on problem A. 642.
10 students sent a solution.
5 points:Csépai András, Di Giovanni Márk, Fehér Zsombor, Janzer Barnabás, Schrettner Bálint, Szabó 789 Barnabás, Williams Kada.
4 points:Adnan Ali, Glasznova Maja.
3 points:1 student.


  • Problems in Mathematics of KöMaL, April 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley