KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 659. For which \(\displaystyle n\) are there polynomials \(\displaystyle g(x)\) and \(\displaystyle h(x)\) with real coefficients and degrees smaller than \(\displaystyle n\) such that \(\displaystyle g\big(h(x)\big)= x^n+x^{n-1}+x^{n-2}+\dots +x^2+x+1\)?

Miklós Schweitzer Competition, 2015

(5 points)

Deadline expired on 10 February 2016.


Statistics on problem A. 659.
6 students sent a solution.
5 points:Glasznova Maja, Imolay András, Williams Kada.
3 points:2 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, January 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley