KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 660. The circle \(\displaystyle \omega\) is inscribed in the quadrilateral \(\displaystyle ABCD\). The incenters of the triangles \(\displaystyle ABC\) and \(\displaystyle ACD\) are \(\displaystyle I\) and \(\displaystyle J\), respectively. Let \(\displaystyle T\) and \(\displaystyle U\) be those two points on the arcs of \(\displaystyle \omega\), lying in the triangles \(\displaystyle ABC\) and \(\displaystyle ACD\), respectively, for which the circles \(\displaystyle ATC\) and \(\displaystyle AUC\) are tangent to \(\displaystyle \omega\). Show that the line segments \(\displaystyle AC\), \(\displaystyle IU\) and \(\displaystyle JT\) are concurrent.

(5 points)

Deadline expired on 10 February 2016.


Statistics on problem A. 660.
3 students sent a solution.
5 points:Williams Kada.
2 points:1 student.
0 point:1 student.


  • Problems in Mathematics of KöMaL, January 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley