KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 683. Let \(\displaystyle K=(V,E)\) be a finite, simple, complete graph. Let \(\displaystyle \phi\colon E\to\mathbb{R}^2\) be a map from the edge set to the plane, such that the preimage of any point in the range defines a connected graph on the entire vertex set \(\displaystyle V\), and the points assigned to the edges of any triangle are collinear. Show that the range of \(\displaystyle \phi\) is contained in a line.

(Based on a problem of the Miklós Schweitzer competition)

(5 points)

Deadline expired on 10 January 2017.


Statistics on problem A. 683.
6 students sent a solution.
5 points:Baran Zsuzsanna, Bukva Balázs, Williams Kada.
4 points:Matolcsi Dávid.
2 points:1 student.
1 point:1 student.


  • Problems in Mathematics of KöMaL, December 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley