KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 688. Prove that among any \(\displaystyle {\color{red}4097}\) distinct \(\displaystyle 0\)–\(\displaystyle 1\) sequences of length \(\displaystyle 24\), there are two which differ from each other at no more than \(\displaystyle 7\) positions.

(Brazilian problem)

(5 points)

Deadline expired on 10 February 2017.


Statistics on problem A. 688.
9 students sent a solution.
5 points:Baran Zsuzsanna, Bukva Balázs, Döbröntei Dávid Bence, Gáspár Attila, Kerekes Anna, Matolcsi Dávid, Williams Kada.
2 points:1 student.
0 point:1 student.


  • Problems in Mathematics of KöMaL, January 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley