KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 692. Do there exist bijective functions \(\displaystyle f,g\colon \mathbb{Q}\to\mathbb{Q}\) such that the function \(\displaystyle f\big(g(x)\big)\) is strictly increasing, but the function \(\displaystyle g\big(f(x)\big)\) is strictly decreasing?

(5 points)

Deadline expired on 10 April 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Megadunk olyan \(\displaystyle f,g\colon \mathbb{Q}\to\mathbb{Q}\) bijektív függvényeket, amelyekre \(\displaystyle f\big(g(x)\big)=2x\) és \(\displaystyle g\big(f(x)\big)=-3x\).

Minden \(\displaystyle x\ne0\) racionális szám egyértelműen felírható \(\displaystyle 2^{a}(-3)^by\) alakban úgy, hogy \(\displaystyle a\) és \(\displaystyle b\) egész számok, az \(\displaystyle y\) pedig olyan racionális szám, amelynek van olyan \(\displaystyle y=\frac{u}{v}\) közönséges tört alakú felírása, amelyben sem \(\displaystyle u\), sem \(\displaystyle v\) nem osztható sem \(\displaystyle 2\)-vel, sem \(\displaystyle 3\)-mal. A továbbiakban az \(\displaystyle y\) mindig ilyen tulajdonságú, \(\displaystyle 0\)-tól különböző számot fog jelölni.

Az \(\displaystyle f\) és \(\displaystyle g\) függvényeket definiáljuk a következőképpen:

\(\displaystyle f(0) = 0, \quad f\big(2^a(-3)^by\big) = 2^b (-3)^a y; \qquad g(0) = 0, \quad g\big(2^a(-3)^by\big) = 2^b (-3)^{a+1} y. \)

Ezek valóban bijektívek, az inverzeik

\(\displaystyle f^{-1} = f; \qquad g^{-1}(0) = 0, \quad g^{-1}\big(2^a(-3)^by\big) = 2^{b-1} (-3)^a y \quad \text{(avagy, \(\displaystyle g^{-1}=\tfrac{-g}6\)).} \)

A megígért tulajdonság is teljesül, mert

\(\displaystyle f\big(g(0)\big)=g\big(f(0)\big)=0, \)

továbbá \(\displaystyle x=2^{a}(-3)^by\) esetén

\(\displaystyle f\big(g(x)\big) = f\Big(g\big(2^a(-3)^by\big)\Big) = f\big(2^b (-3)^{a+1} y\big) = 2^{a+1} (-3)^b y = 2x, \)

és

\(\displaystyle g\big(f(x)\big) = g\Big(f\big(2^a(-3)^by\big)\Big) = g\big(2^b (-3)^{a} y\big) = 2^a (-3)^{b+1} y = -3x. \)


Statistics on problem A. 692.
6 students sent a solution.
5 points:Borbényi Márton, Bukva Balázs, Gáspár Attila, Matolcsi Dávid, Váli Benedek, Williams Kada.


  • Problems in Mathematics of KöMaL, March 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley