KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 693. Let \(\displaystyle A\) and \(\displaystyle B\) be two vertices of a convex polygon \(\displaystyle \mathcal{P}\) with maximum distance from each other. Let the perpendicular bisector of the segment \(\displaystyle AB\) meet the boundary of \(\displaystyle \mathcal{P}\) at points \(\displaystyle C\) and \(\displaystyle D\). Show that the perimeter of \(\displaystyle \mathcal{P}\) is less than \(\displaystyle 2(AB+CD)\).

(5 points)

Deadline expired on 10 April 2017.


Statistics on problem A. 693.
8 students sent a solution.
5 points:Baran Zsuzsanna, Bukva Balázs, Gáspár Attila, Imolay András, Matolcsi Dávid, Williams Kada.
1 point:2 students.


  • Problems in Mathematics of KöMaL, March 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley