Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem A. 696. (April 2017)

A. 696. Let \(\displaystyle k\ge2\) be an integer. Determine all those polynomials \(\displaystyle p(x)\) with real coefficients for which

\(\displaystyle p(x) \cdot p(2x^k-1) = p(x^k) \cdot p(2x-1). \)

(5 pont)

Deadline expired on May 10, 2017.


12 students sent a solution.
5 points:Borbényi Márton, Csahók Tímea, Gáspár Attila, Imolay András, Kővári Péter Viktor, Matolcsi Dávid, Williams Kada.
4 points:Baran Zsuzsanna, Bukva Balázs.
2 points:1 student.
0 point:2 students.

Problems in Mathematics of KöMaL, April 2017