Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 697. (April 2017)

A. 697. For all primes \(\displaystyle p\ge3\), let

\(\displaystyle S(p) = \sum_{k=1}^{\frac{p-1}2} \tan \frac{k^2\pi}{p}. \)

\(\displaystyle (a)\) Show that \(\displaystyle p\equiv1\pmod4\) implies \(\displaystyle S(p)=0\).

\(\displaystyle (b)\) Show that if \(\displaystyle p\equiv3\pmod4\), then \(\displaystyle \dfrac{S(p)}{\sqrt{p}}\) is an odd integer.

(5 pont)

Deadline expired on May 10, 2017.


Statistics:

13 students sent a solution.
5 points:Bukva Balázs, Matolcsi Dávid, Schrettner Jakab, Williams Kada.
4 points:Imolay András, Kővári Péter Viktor.
2 points:7 students.

Problems in Mathematics of KöMaL, April 2017